Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

0.1x^{2}+1.5x=45
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
0.1x^{2}+1.5x-45=45-45
Subtract 45 from both sides of the equation.
0.1x^{2}+1.5x-45=0
Subtracting 45 from itself leaves 0.
x=\frac{-1.5±\sqrt{1.5^{2}-4\times 0.1\left(-45\right)}}{2\times 0.1}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.1 for a, 1.5 for b, and -45 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1.5±\sqrt{2.25-4\times 0.1\left(-45\right)}}{2\times 0.1}
Square 1.5 by squaring both the numerator and the denominator of the fraction.
x=\frac{-1.5±\sqrt{2.25-0.4\left(-45\right)}}{2\times 0.1}
Multiply -4 times 0.1.
x=\frac{-1.5±\sqrt{2.25+18}}{2\times 0.1}
Multiply -0.4 times -45.
x=\frac{-1.5±\sqrt{20.25}}{2\times 0.1}
Add 2.25 to 18.
x=\frac{-1.5±\frac{9}{2}}{2\times 0.1}
Take the square root of 20.25.
x=\frac{-1.5±\frac{9}{2}}{0.2}
Multiply 2 times 0.1.
x=\frac{3}{0.2}
Now solve the equation x=\frac{-1.5±\frac{9}{2}}{0.2} when ± is plus. Add -1.5 to \frac{9}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=15
Divide 3 by 0.2 by multiplying 3 by the reciprocal of 0.2.
x=-\frac{6}{0.2}
Now solve the equation x=\frac{-1.5±\frac{9}{2}}{0.2} when ± is minus. Subtract \frac{9}{2} from -1.5 by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-30
Divide -6 by 0.2 by multiplying -6 by the reciprocal of 0.2.
x=15 x=-30
The equation is now solved.
0.1x^{2}+1.5x=45
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{0.1x^{2}+1.5x}{0.1}=\frac{45}{0.1}
Multiply both sides by 10.
x^{2}+\frac{1.5}{0.1}x=\frac{45}{0.1}
Dividing by 0.1 undoes the multiplication by 0.1.
x^{2}+15x=\frac{45}{0.1}
Divide 1.5 by 0.1 by multiplying 1.5 by the reciprocal of 0.1.
x^{2}+15x=450
Divide 45 by 0.1 by multiplying 45 by the reciprocal of 0.1.
x^{2}+15x+\left(\frac{15}{2}\right)^{2}=450+\left(\frac{15}{2}\right)^{2}
Divide 15, the coefficient of the x term, by 2 to get \frac{15}{2}. Then add the square of \frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+15x+\frac{225}{4}=450+\frac{225}{4}
Square \frac{15}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+15x+\frac{225}{4}=\frac{2025}{4}
Add 450 to \frac{225}{4}.
\left(x+\frac{15}{2}\right)^{2}=\frac{2025}{4}
Factor x^{2}+15x+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{2}\right)^{2}}=\sqrt{\frac{2025}{4}}
Take the square root of both sides of the equation.
x+\frac{15}{2}=\frac{45}{2} x+\frac{15}{2}=-\frac{45}{2}
Simplify.
x=15 x=-30
Subtract \frac{15}{2} from both sides of the equation.