Solve for x
x = \frac{2 \sqrt{10} + 7}{3} \approx 4.44151844
x=\frac{7-2\sqrt{10}}{3}\approx 0.225148227
Graph
Share
Copied to clipboard
\left(1.5-1.5x\right)\left(1+x\right)+7x-3=0
Use the distributive property to multiply 1.5 by 1-x.
1.5-1.5x^{2}+7x-3=0
Use the distributive property to multiply 1.5-1.5x by 1+x and combine like terms.
-1.5-1.5x^{2}+7x=0
Subtract 3 from 1.5 to get -1.5.
-1.5x^{2}+7x-1.5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-7±\sqrt{7^{2}-4\left(-1.5\right)\left(-1.5\right)}}{2\left(-1.5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1.5 for a, 7 for b, and -1.5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-1.5\right)\left(-1.5\right)}}{2\left(-1.5\right)}
Square 7.
x=\frac{-7±\sqrt{49+6\left(-1.5\right)}}{2\left(-1.5\right)}
Multiply -4 times -1.5.
x=\frac{-7±\sqrt{49-9}}{2\left(-1.5\right)}
Multiply 6 times -1.5.
x=\frac{-7±\sqrt{40}}{2\left(-1.5\right)}
Add 49 to -9.
x=\frac{-7±2\sqrt{10}}{2\left(-1.5\right)}
Take the square root of 40.
x=\frac{-7±2\sqrt{10}}{-3}
Multiply 2 times -1.5.
x=\frac{2\sqrt{10}-7}{-3}
Now solve the equation x=\frac{-7±2\sqrt{10}}{-3} when ± is plus. Add -7 to 2\sqrt{10}.
x=\frac{7-2\sqrt{10}}{3}
Divide -7+2\sqrt{10} by -3.
x=\frac{-2\sqrt{10}-7}{-3}
Now solve the equation x=\frac{-7±2\sqrt{10}}{-3} when ± is minus. Subtract 2\sqrt{10} from -7.
x=\frac{2\sqrt{10}+7}{3}
Divide -7-2\sqrt{10} by -3.
x=\frac{7-2\sqrt{10}}{3} x=\frac{2\sqrt{10}+7}{3}
The equation is now solved.
\left(1.5-1.5x\right)\left(1+x\right)+7x-3=0
Use the distributive property to multiply 1.5 by 1-x.
1.5-1.5x^{2}+7x-3=0
Use the distributive property to multiply 1.5-1.5x by 1+x and combine like terms.
-1.5-1.5x^{2}+7x=0
Subtract 3 from 1.5 to get -1.5.
-1.5x^{2}+7x=1.5
Add 1.5 to both sides. Anything plus zero gives itself.
\frac{-1.5x^{2}+7x}{-1.5}=\frac{1.5}{-1.5}
Divide both sides of the equation by -1.5, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{7}{-1.5}x=\frac{1.5}{-1.5}
Dividing by -1.5 undoes the multiplication by -1.5.
x^{2}-\frac{14}{3}x=\frac{1.5}{-1.5}
Divide 7 by -1.5 by multiplying 7 by the reciprocal of -1.5.
x^{2}-\frac{14}{3}x=-1
Divide 1.5 by -1.5 by multiplying 1.5 by the reciprocal of -1.5.
x^{2}-\frac{14}{3}x+\left(-\frac{7}{3}\right)^{2}=-1+\left(-\frac{7}{3}\right)^{2}
Divide -\frac{14}{3}, the coefficient of the x term, by 2 to get -\frac{7}{3}. Then add the square of -\frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{14}{3}x+\frac{49}{9}=-1+\frac{49}{9}
Square -\frac{7}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{14}{3}x+\frac{49}{9}=\frac{40}{9}
Add -1 to \frac{49}{9}.
\left(x-\frac{7}{3}\right)^{2}=\frac{40}{9}
Factor x^{2}-\frac{14}{3}x+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{3}\right)^{2}}=\sqrt{\frac{40}{9}}
Take the square root of both sides of the equation.
x-\frac{7}{3}=\frac{2\sqrt{10}}{3} x-\frac{7}{3}=-\frac{2\sqrt{10}}{3}
Simplify.
x=\frac{2\sqrt{10}+7}{3} x=\frac{7-2\sqrt{10}}{3}
Add \frac{7}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}