1.5 \left( 1.- \frac{ 8 }{ 3 } x \right) = 2.4
Solve for x
x=-0.225
Graph
Share
Copied to clipboard
1-\frac{8}{3}x=\frac{2.4}{1.5}
Divide both sides by 1.5.
1-\frac{8}{3}x=\frac{24}{15}
Expand \frac{2.4}{1.5} by multiplying both numerator and the denominator by 10.
1-\frac{8}{3}x=\frac{8}{5}
Reduce the fraction \frac{24}{15} to lowest terms by extracting and canceling out 3.
-\frac{8}{3}x=\frac{8}{5}-1
Subtract 1 from both sides.
-\frac{8}{3}x=\frac{8}{5}-\frac{5}{5}
Convert 1 to fraction \frac{5}{5}.
-\frac{8}{3}x=\frac{8-5}{5}
Since \frac{8}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{8}{3}x=\frac{3}{5}
Subtract 5 from 8 to get 3.
x=\frac{3}{5}\left(-\frac{3}{8}\right)
Multiply both sides by -\frac{3}{8}, the reciprocal of -\frac{8}{3}.
x=\frac{3\left(-3\right)}{5\times 8}
Multiply \frac{3}{5} times -\frac{3}{8} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-9}{40}
Do the multiplications in the fraction \frac{3\left(-3\right)}{5\times 8}.
x=-\frac{9}{40}
Fraction \frac{-9}{40} can be rewritten as -\frac{9}{40} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}