Solve for x
x = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
x=0
Graph
Share
Copied to clipboard
1.5\left(2x-2\right)\times 4x-\left(3x+12\right)+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Variable x cannot be equal to any of the values -4,1 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-1\right)\left(x+4\right), the least common multiple of 3\left(x+4\right),2\left(x-1\right),2.
6\left(2x-2\right)x-\left(3x+12\right)+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Multiply 1.5 and 4 to get 6.
\left(12x-12\right)x-\left(3x+12\right)+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Use the distributive property to multiply 6 by 2x-2.
12x^{2}-12x-\left(3x+12\right)+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Use the distributive property to multiply 12x-12 by x.
12x^{2}-12x-3x-12+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
To find the opposite of 3x+12, find the opposite of each term.
12x^{2}-15x-12+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Combine -12x and -3x to get -15x.
12x^{2}-15x-12-3\left(x-1\right)\left(x+4\right)=0
Multiply 6 and -\frac{1}{2} to get -3.
12x^{2}-15x-12+\left(-3x+3\right)\left(x+4\right)=0
Use the distributive property to multiply -3 by x-1.
12x^{2}-15x-12-3x^{2}-9x+12=0
Use the distributive property to multiply -3x+3 by x+4 and combine like terms.
9x^{2}-15x-12-9x+12=0
Combine 12x^{2} and -3x^{2} to get 9x^{2}.
9x^{2}-24x-12+12=0
Combine -15x and -9x to get -24x.
9x^{2}-24x=0
Add -12 and 12 to get 0.
x\left(9x-24\right)=0
Factor out x.
x=0 x=\frac{8}{3}
To find equation solutions, solve x=0 and 9x-24=0.
1.5\left(2x-2\right)\times 4x-\left(3x+12\right)+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Variable x cannot be equal to any of the values -4,1 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-1\right)\left(x+4\right), the least common multiple of 3\left(x+4\right),2\left(x-1\right),2.
6\left(2x-2\right)x-\left(3x+12\right)+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Multiply 1.5 and 4 to get 6.
\left(12x-12\right)x-\left(3x+12\right)+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Use the distributive property to multiply 6 by 2x-2.
12x^{2}-12x-\left(3x+12\right)+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Use the distributive property to multiply 12x-12 by x.
12x^{2}-12x-3x-12+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
To find the opposite of 3x+12, find the opposite of each term.
12x^{2}-15x-12+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Combine -12x and -3x to get -15x.
12x^{2}-15x-12-3\left(x-1\right)\left(x+4\right)=0
Multiply 6 and -\frac{1}{2} to get -3.
12x^{2}-15x-12+\left(-3x+3\right)\left(x+4\right)=0
Use the distributive property to multiply -3 by x-1.
12x^{2}-15x-12-3x^{2}-9x+12=0
Use the distributive property to multiply -3x+3 by x+4 and combine like terms.
9x^{2}-15x-12-9x+12=0
Combine 12x^{2} and -3x^{2} to get 9x^{2}.
9x^{2}-24x-12+12=0
Combine -15x and -9x to get -24x.
9x^{2}-24x=0
Add -12 and 12 to get 0.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -24 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±24}{2\times 9}
Take the square root of \left(-24\right)^{2}.
x=\frac{24±24}{2\times 9}
The opposite of -24 is 24.
x=\frac{24±24}{18}
Multiply 2 times 9.
x=\frac{48}{18}
Now solve the equation x=\frac{24±24}{18} when ± is plus. Add 24 to 24.
x=\frac{8}{3}
Reduce the fraction \frac{48}{18} to lowest terms by extracting and canceling out 6.
x=\frac{0}{18}
Now solve the equation x=\frac{24±24}{18} when ± is minus. Subtract 24 from 24.
x=0
Divide 0 by 18.
x=\frac{8}{3} x=0
The equation is now solved.
1.5\left(2x-2\right)\times 4x-\left(3x+12\right)+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Variable x cannot be equal to any of the values -4,1 since division by zero is not defined. Multiply both sides of the equation by 6\left(x-1\right)\left(x+4\right), the least common multiple of 3\left(x+4\right),2\left(x-1\right),2.
6\left(2x-2\right)x-\left(3x+12\right)+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Multiply 1.5 and 4 to get 6.
\left(12x-12\right)x-\left(3x+12\right)+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Use the distributive property to multiply 6 by 2x-2.
12x^{2}-12x-\left(3x+12\right)+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Use the distributive property to multiply 12x-12 by x.
12x^{2}-12x-3x-12+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
To find the opposite of 3x+12, find the opposite of each term.
12x^{2}-15x-12+6\left(x-1\right)\left(x+4\right)\left(-\frac{1}{2}\right)=0
Combine -12x and -3x to get -15x.
12x^{2}-15x-12-3\left(x-1\right)\left(x+4\right)=0
Multiply 6 and -\frac{1}{2} to get -3.
12x^{2}-15x-12+\left(-3x+3\right)\left(x+4\right)=0
Use the distributive property to multiply -3 by x-1.
12x^{2}-15x-12-3x^{2}-9x+12=0
Use the distributive property to multiply -3x+3 by x+4 and combine like terms.
9x^{2}-15x-12-9x+12=0
Combine 12x^{2} and -3x^{2} to get 9x^{2}.
9x^{2}-24x-12+12=0
Combine -15x and -9x to get -24x.
9x^{2}-24x=0
Add -12 and 12 to get 0.
\frac{9x^{2}-24x}{9}=\frac{0}{9}
Divide both sides by 9.
x^{2}+\left(-\frac{24}{9}\right)x=\frac{0}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{8}{3}x=\frac{0}{9}
Reduce the fraction \frac{-24}{9} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{8}{3}x=0
Divide 0 by 9.
x^{2}-\frac{8}{3}x+\left(-\frac{4}{3}\right)^{2}=\left(-\frac{4}{3}\right)^{2}
Divide -\frac{8}{3}, the coefficient of the x term, by 2 to get -\frac{4}{3}. Then add the square of -\frac{4}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{8}{3}x+\frac{16}{9}=\frac{16}{9}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{4}{3}\right)^{2}=\frac{16}{9}
Factor x^{2}-\frac{8}{3}x+\frac{16}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{4}{3}\right)^{2}}=\sqrt{\frac{16}{9}}
Take the square root of both sides of the equation.
x-\frac{4}{3}=\frac{4}{3} x-\frac{4}{3}=-\frac{4}{3}
Simplify.
x=\frac{8}{3} x=0
Add \frac{4}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}