Solve for x
x = \frac{7110957 \sqrt{15}}{7375} \approx 3734.321089708
Graph
Share
Copied to clipboard
\frac{x}{\sqrt{15}}=\frac{1422.1914}{1.475}
Divide both sides by 1.475.
\frac{x}{\sqrt{15}}=\frac{14221914}{14750}
Expand \frac{1422.1914}{1.475} by multiplying both numerator and the denominator by 10000.
\frac{x}{\sqrt{15}}=\frac{7110957}{7375}
Reduce the fraction \frac{14221914}{14750} to lowest terms by extracting and canceling out 2.
\frac{x\sqrt{15}}{\left(\sqrt{15}\right)^{2}}=\frac{7110957}{7375}
Rationalize the denominator of \frac{x}{\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{x\sqrt{15}}{15}=\frac{7110957}{7375}
The square of \sqrt{15} is 15.
x\sqrt{15}=\frac{7110957}{7375}\times 15
Multiply both sides by 15.
x\sqrt{15}=\frac{7110957\times 15}{7375}
Express \frac{7110957}{7375}\times 15 as a single fraction.
x\sqrt{15}=\frac{106664355}{7375}
Multiply 7110957 and 15 to get 106664355.
x\sqrt{15}=\frac{21332871}{1475}
Reduce the fraction \frac{106664355}{7375} to lowest terms by extracting and canceling out 5.
\sqrt{15}x=\frac{21332871}{1475}
The equation is in standard form.
\frac{\sqrt{15}x}{\sqrt{15}}=\frac{\frac{21332871}{1475}}{\sqrt{15}}
Divide both sides by \sqrt{15}.
x=\frac{\frac{21332871}{1475}}{\sqrt{15}}
Dividing by \sqrt{15} undoes the multiplication by \sqrt{15}.
x=\frac{7110957\sqrt{15}}{7375}
Divide \frac{21332871}{1475} by \sqrt{15}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}