Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

1.37a\times \frac{8}{27}\times 3^{3}
Calculate \frac{2}{3} to the power of 3 and get \frac{8}{27}.
\frac{137}{100}a\times \frac{8}{27}\times 3^{3}
Convert decimal number 1.37 to fraction \frac{137}{100}.
\frac{137\times 8}{100\times 27}a\times 3^{3}
Multiply \frac{137}{100} times \frac{8}{27} by multiplying numerator times numerator and denominator times denominator.
\frac{1096}{2700}a\times 3^{3}
Do the multiplications in the fraction \frac{137\times 8}{100\times 27}.
\frac{274}{675}a\times 3^{3}
Reduce the fraction \frac{1096}{2700} to lowest terms by extracting and canceling out 4.
\frac{274}{675}a\times 27
Calculate 3 to the power of 3 and get 27.
\frac{274\times 27}{675}a
Express \frac{274}{675}\times 27 as a single fraction.
\frac{7398}{675}a
Multiply 274 and 27 to get 7398.
\frac{274}{25}a
Reduce the fraction \frac{7398}{675} to lowest terms by extracting and canceling out 27.
\frac{\mathrm{d}}{\mathrm{d}a}(1.37a\times \frac{8}{27}\times 3^{3})
Calculate \frac{2}{3} to the power of 3 and get \frac{8}{27}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{137}{100}a\times \frac{8}{27}\times 3^{3})
Convert decimal number 1.37 to fraction \frac{137}{100}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{137\times 8}{100\times 27}a\times 3^{3})
Multiply \frac{137}{100} times \frac{8}{27} by multiplying numerator times numerator and denominator times denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1096}{2700}a\times 3^{3})
Do the multiplications in the fraction \frac{137\times 8}{100\times 27}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{274}{675}a\times 3^{3})
Reduce the fraction \frac{1096}{2700} to lowest terms by extracting and canceling out 4.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{274}{675}a\times 27)
Calculate 3 to the power of 3 and get 27.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{274\times 27}{675}a)
Express \frac{274}{675}\times 27 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{7398}{675}a)
Multiply 274 and 27 to get 7398.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{274}{25}a)
Reduce the fraction \frac{7398}{675} to lowest terms by extracting and canceling out 27.
\frac{274}{25}a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{274}{25}a^{0}
Subtract 1 from 1.
\frac{274}{25}\times 1
For any term t except 0, t^{0}=1.
\frac{274}{25}
For any term t, t\times 1=t and 1t=t.