Solve for x
x = \frac{\sqrt{880841} - 539}{10} \approx 39.953129942
x=\frac{-\sqrt{880841}-539}{10}\approx -147.753129942
Graph
Share
Copied to clipboard
0.0005x^{2}+0.0539x-1.5816=1.37
Swap sides so that all variable terms are on the left hand side.
0.0005x^{2}+0.0539x-1.5816-1.37=0
Subtract 1.37 from both sides.
0.0005x^{2}+0.0539x-2.9516=0
Subtract 1.37 from -1.5816 to get -2.9516.
x=\frac{-0.0539±\sqrt{0.0539^{2}-4\times 0.0005\left(-2.9516\right)}}{2\times 0.0005}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 0.0005 for a, 0.0539 for b, and -2.9516 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.0539±\sqrt{0.00290521-4\times 0.0005\left(-2.9516\right)}}{2\times 0.0005}
Square 0.0539 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.0539±\sqrt{0.00290521-0.002\left(-2.9516\right)}}{2\times 0.0005}
Multiply -4 times 0.0005.
x=\frac{-0.0539±\sqrt{0.00290521+0.0059032}}{2\times 0.0005}
Multiply -0.002 times -2.9516 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.0539±\sqrt{0.00880841}}{2\times 0.0005}
Add 0.00290521 to 0.0059032 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.0539±\frac{\sqrt{880841}}{10000}}{2\times 0.0005}
Take the square root of 0.00880841.
x=\frac{-0.0539±\frac{\sqrt{880841}}{10000}}{0.001}
Multiply 2 times 0.0005.
x=\frac{\sqrt{880841}-539}{0.001\times 10000}
Now solve the equation x=\frac{-0.0539±\frac{\sqrt{880841}}{10000}}{0.001} when ± is plus. Add -0.0539 to \frac{\sqrt{880841}}{10000}.
x=\frac{\sqrt{880841}-539}{10}
Divide \frac{-539+\sqrt{880841}}{10000} by 0.001 by multiplying \frac{-539+\sqrt{880841}}{10000} by the reciprocal of 0.001.
x=\frac{-\sqrt{880841}-539}{0.001\times 10000}
Now solve the equation x=\frac{-0.0539±\frac{\sqrt{880841}}{10000}}{0.001} when ± is minus. Subtract \frac{\sqrt{880841}}{10000} from -0.0539.
x=\frac{-\sqrt{880841}-539}{10}
Divide \frac{-539-\sqrt{880841}}{10000} by 0.001 by multiplying \frac{-539-\sqrt{880841}}{10000} by the reciprocal of 0.001.
x=\frac{\sqrt{880841}-539}{10} x=\frac{-\sqrt{880841}-539}{10}
The equation is now solved.
0.0005x^{2}+0.0539x-1.5816=1.37
Swap sides so that all variable terms are on the left hand side.
0.0005x^{2}+0.0539x=1.37+1.5816
Add 1.5816 to both sides.
0.0005x^{2}+0.0539x=2.9516
Add 1.37 and 1.5816 to get 2.9516.
0.0005x^{2}+0.0539x=\frac{7379}{2500}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{0.0005x^{2}+0.0539x}{0.0005}=\frac{\frac{7379}{2500}}{0.0005}
Multiply both sides by 2000.
x^{2}+\frac{0.0539}{0.0005}x=\frac{\frac{7379}{2500}}{0.0005}
Dividing by 0.0005 undoes the multiplication by 0.0005.
x^{2}+107.8x=\frac{\frac{7379}{2500}}{0.0005}
Divide 0.0539 by 0.0005 by multiplying 0.0539 by the reciprocal of 0.0005.
x^{2}+107.8x=\frac{29516}{5}
Divide \frac{7379}{2500} by 0.0005 by multiplying \frac{7379}{2500} by the reciprocal of 0.0005.
x^{2}+107.8x+53.9^{2}=\frac{29516}{5}+53.9^{2}
Divide 107.8, the coefficient of the x term, by 2 to get 53.9. Then add the square of 53.9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+107.8x+2905.21=\frac{29516}{5}+2905.21
Square 53.9 by squaring both the numerator and the denominator of the fraction.
x^{2}+107.8x+2905.21=\frac{880841}{100}
Add \frac{29516}{5} to 2905.21 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+53.9\right)^{2}=\frac{880841}{100}
Factor x^{2}+107.8x+2905.21. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+53.9\right)^{2}}=\sqrt{\frac{880841}{100}}
Take the square root of both sides of the equation.
x+53.9=\frac{\sqrt{880841}}{10} x+53.9=-\frac{\sqrt{880841}}{10}
Simplify.
x=\frac{\sqrt{880841}-539}{10} x=\frac{-\sqrt{880841}-539}{10}
Subtract 53.9 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}