Solve for F_1
F_{1}=-\frac{5000}{6849}+\frac{5000}{761x}
x\neq 0
Solve for x
x=\frac{45000}{6849F_{1}+5000}
F_{1}\neq -\frac{5000}{6849}
Graph
Share
Copied to clipboard
1.3698F_{1}x=9-x
Multiply both sides of the equation by x.
\frac{6849x}{5000}F_{1}=9-x
The equation is in standard form.
\frac{5000\times \frac{6849x}{5000}F_{1}}{6849x}=\frac{5000\left(9-x\right)}{6849x}
Divide both sides by 1.3698x.
F_{1}=\frac{5000\left(9-x\right)}{6849x}
Dividing by 1.3698x undoes the multiplication by 1.3698x.
F_{1}=-\frac{5000}{6849}+\frac{5000}{761x}
Divide 9-x by 1.3698x.
1.3698F_{1}x=9-x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
1.3698F_{1}x+x=9
Add x to both sides.
\left(1.3698F_{1}+1\right)x=9
Combine all terms containing x.
\left(\frac{6849F_{1}}{5000}+1\right)x=9
The equation is in standard form.
\frac{\left(\frac{6849F_{1}}{5000}+1\right)x}{\frac{6849F_{1}}{5000}+1}=\frac{9}{\frac{6849F_{1}}{5000}+1}
Divide both sides by 1.3698F_{1}+1.
x=\frac{9}{\frac{6849F_{1}}{5000}+1}
Dividing by 1.3698F_{1}+1 undoes the multiplication by 1.3698F_{1}+1.
x=\frac{9}{\frac{6849F_{1}}{5000}+1}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}