Solve for t
t=\frac{9x}{220}
Solve for x
x=\frac{220t}{9}
Graph
Share
Copied to clipboard
1.35x=33t
Multiply 1.65 and 20 to get 33.
33t=1.35x
Swap sides so that all variable terms are on the left hand side.
33t=\frac{27x}{20}
The equation is in standard form.
\frac{33t}{33}=\frac{27x}{20\times 33}
Divide both sides by 33.
t=\frac{27x}{20\times 33}
Dividing by 33 undoes the multiplication by 33.
t=\frac{9x}{220}
Divide \frac{27x}{20} by 33.
1.35x=33t
Multiply 1.65 and 20 to get 33.
\frac{1.35x}{1.35}=\frac{33t}{1.35}
Divide both sides of the equation by 1.35, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{33t}{1.35}
Dividing by 1.35 undoes the multiplication by 1.35.
x=\frac{220t}{9}
Divide 33t by 1.35 by multiplying 33t by the reciprocal of 1.35.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}