Solve for x
x = \frac{2 \sqrt{71} + 22}{5} \approx 7.770459909
x = \frac{22 - 2 \sqrt{71}}{5} \approx 1.029540091
Graph
Share
Copied to clipboard
1.25x^{2}-11x+10=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 1.25\times 10}}{2\times 1.25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1.25 for a, -11 for b, and 10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 1.25\times 10}}{2\times 1.25}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-5\times 10}}{2\times 1.25}
Multiply -4 times 1.25.
x=\frac{-\left(-11\right)±\sqrt{121-50}}{2\times 1.25}
Multiply -5 times 10.
x=\frac{-\left(-11\right)±\sqrt{71}}{2\times 1.25}
Add 121 to -50.
x=\frac{11±\sqrt{71}}{2\times 1.25}
The opposite of -11 is 11.
x=\frac{11±\sqrt{71}}{2.5}
Multiply 2 times 1.25.
x=\frac{\sqrt{71}+11}{2.5}
Now solve the equation x=\frac{11±\sqrt{71}}{2.5} when ± is plus. Add 11 to \sqrt{71}.
x=\frac{2\sqrt{71}+22}{5}
Divide 11+\sqrt{71} by 2.5 by multiplying 11+\sqrt{71} by the reciprocal of 2.5.
x=\frac{11-\sqrt{71}}{2.5}
Now solve the equation x=\frac{11±\sqrt{71}}{2.5} when ± is minus. Subtract \sqrt{71} from 11.
x=\frac{22-2\sqrt{71}}{5}
Divide 11-\sqrt{71} by 2.5 by multiplying 11-\sqrt{71} by the reciprocal of 2.5.
x=\frac{2\sqrt{71}+22}{5} x=\frac{22-2\sqrt{71}}{5}
The equation is now solved.
1.25x^{2}-11x+10=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
1.25x^{2}-11x+10-10=-10
Subtract 10 from both sides of the equation.
1.25x^{2}-11x=-10
Subtracting 10 from itself leaves 0.
\frac{1.25x^{2}-11x}{1.25}=-\frac{10}{1.25}
Divide both sides of the equation by 1.25, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{11}{1.25}\right)x=-\frac{10}{1.25}
Dividing by 1.25 undoes the multiplication by 1.25.
x^{2}-8.8x=-\frac{10}{1.25}
Divide -11 by 1.25 by multiplying -11 by the reciprocal of 1.25.
x^{2}-8.8x=-8
Divide -10 by 1.25 by multiplying -10 by the reciprocal of 1.25.
x^{2}-8.8x+\left(-4.4\right)^{2}=-8+\left(-4.4\right)^{2}
Divide -8.8, the coefficient of the x term, by 2 to get -4.4. Then add the square of -4.4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8.8x+19.36=-8+19.36
Square -4.4 by squaring both the numerator and the denominator of the fraction.
x^{2}-8.8x+19.36=11.36
Add -8 to 19.36.
\left(x-4.4\right)^{2}=11.36
Factor x^{2}-8.8x+19.36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4.4\right)^{2}}=\sqrt{11.36}
Take the square root of both sides of the equation.
x-4.4=\frac{2\sqrt{71}}{5} x-4.4=-\frac{2\sqrt{71}}{5}
Simplify.
x=\frac{2\sqrt{71}+22}{5} x=\frac{22-2\sqrt{71}}{5}
Add 4.4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}