Solve for x
x = \frac{\sqrt{286549} + 7}{125} \approx 4.338421745
x=\frac{7-\sqrt{286549}}{125}\approx -4.226421745
Graph
Share
Copied to clipboard
1.25x^{2}-0.14x-22.92=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-0.14\right)±\sqrt{\left(-0.14\right)^{2}-4\times 1.25\left(-22.92\right)}}{2\times 1.25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1.25 for a, -0.14 for b, and -22.92 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-0.14\right)±\sqrt{0.0196-4\times 1.25\left(-22.92\right)}}{2\times 1.25}
Square -0.14 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-0.14\right)±\sqrt{0.0196-5\left(-22.92\right)}}{2\times 1.25}
Multiply -4 times 1.25.
x=\frac{-\left(-0.14\right)±\sqrt{0.0196+114.6}}{2\times 1.25}
Multiply -5 times -22.92.
x=\frac{-\left(-0.14\right)±\sqrt{114.6196}}{2\times 1.25}
Add 0.0196 to 114.6 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-0.14\right)±\frac{\sqrt{286549}}{50}}{2\times 1.25}
Take the square root of 114.6196.
x=\frac{0.14±\frac{\sqrt{286549}}{50}}{2\times 1.25}
The opposite of -0.14 is 0.14.
x=\frac{0.14±\frac{\sqrt{286549}}{50}}{2.5}
Multiply 2 times 1.25.
x=\frac{\sqrt{286549}+7}{2.5\times 50}
Now solve the equation x=\frac{0.14±\frac{\sqrt{286549}}{50}}{2.5} when ± is plus. Add 0.14 to \frac{\sqrt{286549}}{50}.
x=\frac{\sqrt{286549}+7}{125}
Divide \frac{7+\sqrt{286549}}{50} by 2.5 by multiplying \frac{7+\sqrt{286549}}{50} by the reciprocal of 2.5.
x=\frac{7-\sqrt{286549}}{2.5\times 50}
Now solve the equation x=\frac{0.14±\frac{\sqrt{286549}}{50}}{2.5} when ± is minus. Subtract \frac{\sqrt{286549}}{50} from 0.14.
x=\frac{7-\sqrt{286549}}{125}
Divide \frac{7-\sqrt{286549}}{50} by 2.5 by multiplying \frac{7-\sqrt{286549}}{50} by the reciprocal of 2.5.
x=\frac{\sqrt{286549}+7}{125} x=\frac{7-\sqrt{286549}}{125}
The equation is now solved.
1.25x^{2}-0.14x-22.92=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
1.25x^{2}-0.14x-22.92-\left(-22.92\right)=-\left(-22.92\right)
Add 22.92 to both sides of the equation.
1.25x^{2}-0.14x=-\left(-22.92\right)
Subtracting -22.92 from itself leaves 0.
1.25x^{2}-0.14x=22.92
Subtract -22.92 from 0.
\frac{1.25x^{2}-0.14x}{1.25}=\frac{22.92}{1.25}
Divide both sides of the equation by 1.25, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{0.14}{1.25}\right)x=\frac{22.92}{1.25}
Dividing by 1.25 undoes the multiplication by 1.25.
x^{2}-0.112x=\frac{22.92}{1.25}
Divide -0.14 by 1.25 by multiplying -0.14 by the reciprocal of 1.25.
x^{2}-0.112x=18.336
Divide 22.92 by 1.25 by multiplying 22.92 by the reciprocal of 1.25.
x^{2}-0.112x+\left(-0.056\right)^{2}=18.336+\left(-0.056\right)^{2}
Divide -0.112, the coefficient of the x term, by 2 to get -0.056. Then add the square of -0.056 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-0.112x+0.003136=18.336+0.003136
Square -0.056 by squaring both the numerator and the denominator of the fraction.
x^{2}-0.112x+0.003136=18.339136
Add 18.336 to 0.003136 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-0.056\right)^{2}=18.339136
Factor x^{2}-0.112x+0.003136. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-0.056\right)^{2}}=\sqrt{18.339136}
Take the square root of both sides of the equation.
x-0.056=\frac{\sqrt{286549}}{125} x-0.056=-\frac{\sqrt{286549}}{125}
Simplify.
x=\frac{\sqrt{286549}+7}{125} x=\frac{7-\sqrt{286549}}{125}
Add 0.056 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}