Solve for x
x=\sqrt{9627}+128\approx 226.117276766
x=128-\sqrt{9627}\approx 29.882723234
Graph
Share
Copied to clipboard
-0.0001x^{2}+0.0256x+0.5543=1.23
Swap sides so that all variable terms are on the left hand side.
-0.0001x^{2}+0.0256x+0.5543-1.23=0
Subtract 1.23 from both sides.
-0.0001x^{2}+0.0256x-0.6757=0
Subtract 1.23 from 0.5543 to get -0.6757.
x=\frac{-0.0256±\sqrt{0.0256^{2}-4\left(-0.0001\right)\left(-0.6757\right)}}{2\left(-0.0001\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -0.0001 for a, 0.0256 for b, and -0.6757 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.0256±\sqrt{0.00065536-4\left(-0.0001\right)\left(-0.6757\right)}}{2\left(-0.0001\right)}
Square 0.0256 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.0256±\sqrt{0.00065536+0.0004\left(-0.6757\right)}}{2\left(-0.0001\right)}
Multiply -4 times -0.0001.
x=\frac{-0.0256±\sqrt{0.00065536-0.00027028}}{2\left(-0.0001\right)}
Multiply 0.0004 times -0.6757 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.0256±\sqrt{0.00038508}}{2\left(-0.0001\right)}
Add 0.00065536 to -0.00027028 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.0256±\frac{\sqrt{9627}}{5000}}{2\left(-0.0001\right)}
Take the square root of 0.00038508.
x=\frac{-0.0256±\frac{\sqrt{9627}}{5000}}{-0.0002}
Multiply 2 times -0.0001.
x=\frac{\frac{\sqrt{9627}}{5000}-\frac{16}{625}}{-0.0002}
Now solve the equation x=\frac{-0.0256±\frac{\sqrt{9627}}{5000}}{-0.0002} when ± is plus. Add -0.0256 to \frac{\sqrt{9627}}{5000}.
x=128-\sqrt{9627}
Divide -\frac{16}{625}+\frac{\sqrt{9627}}{5000} by -0.0002 by multiplying -\frac{16}{625}+\frac{\sqrt{9627}}{5000} by the reciprocal of -0.0002.
x=\frac{-\frac{\sqrt{9627}}{5000}-\frac{16}{625}}{-0.0002}
Now solve the equation x=\frac{-0.0256±\frac{\sqrt{9627}}{5000}}{-0.0002} when ± is minus. Subtract \frac{\sqrt{9627}}{5000} from -0.0256.
x=\sqrt{9627}+128
Divide -\frac{16}{625}-\frac{\sqrt{9627}}{5000} by -0.0002 by multiplying -\frac{16}{625}-\frac{\sqrt{9627}}{5000} by the reciprocal of -0.0002.
x=128-\sqrt{9627} x=\sqrt{9627}+128
The equation is now solved.
-0.0001x^{2}+0.0256x+0.5543=1.23
Swap sides so that all variable terms are on the left hand side.
-0.0001x^{2}+0.0256x=1.23-0.5543
Subtract 0.5543 from both sides.
-0.0001x^{2}+0.0256x=0.6757
Subtract 0.5543 from 1.23 to get 0.6757.
-0.0001x^{2}+0.0256x=\frac{6757}{10000}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-0.0001x^{2}+0.0256x}{-0.0001}=\frac{\frac{6757}{10000}}{-0.0001}
Multiply both sides by -10000.
x^{2}+\frac{0.0256}{-0.0001}x=\frac{\frac{6757}{10000}}{-0.0001}
Dividing by -0.0001 undoes the multiplication by -0.0001.
x^{2}-256x=\frac{\frac{6757}{10000}}{-0.0001}
Divide 0.0256 by -0.0001 by multiplying 0.0256 by the reciprocal of -0.0001.
x^{2}-256x=-6757
Divide \frac{6757}{10000} by -0.0001 by multiplying \frac{6757}{10000} by the reciprocal of -0.0001.
x^{2}-256x+\left(-128\right)^{2}=-6757+\left(-128\right)^{2}
Divide -256, the coefficient of the x term, by 2 to get -128. Then add the square of -128 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-256x+16384=-6757+16384
Square -128.
x^{2}-256x+16384=9627
Add -6757 to 16384.
\left(x-128\right)^{2}=9627
Factor x^{2}-256x+16384. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-128\right)^{2}}=\sqrt{9627}
Take the square root of both sides of the equation.
x-128=\sqrt{9627} x-128=-\sqrt{9627}
Simplify.
x=\sqrt{9627}+128 x=128-\sqrt{9627}
Add 128 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}