Solve for T
T = \frac{46153}{120} = 384\frac{73}{120} \approx 384.608333333
Share
Copied to clipboard
1.214=1+1.92\times \frac{1}{1000}\left(T-273.15\right)
Calculate 10 to the power of -3 and get \frac{1}{1000}.
1.214=1+\frac{6}{3125}\left(T-273.15\right)
Multiply 1.92 and \frac{1}{1000} to get \frac{6}{3125}.
1.214=1+\frac{6}{3125}T-\frac{16389}{31250}
Use the distributive property to multiply \frac{6}{3125} by T-273.15.
1.214=\frac{14861}{31250}+\frac{6}{3125}T
Subtract \frac{16389}{31250} from 1 to get \frac{14861}{31250}.
\frac{14861}{31250}+\frac{6}{3125}T=1.214
Swap sides so that all variable terms are on the left hand side.
\frac{6}{3125}T=1.214-\frac{14861}{31250}
Subtract \frac{14861}{31250} from both sides.
\frac{6}{3125}T=\frac{46153}{62500}
Subtract \frac{14861}{31250} from 1.214 to get \frac{46153}{62500}.
T=\frac{46153}{62500}\times \frac{3125}{6}
Multiply both sides by \frac{3125}{6}, the reciprocal of \frac{6}{3125}.
T=\frac{46153}{120}
Multiply \frac{46153}{62500} and \frac{3125}{6} to get \frac{46153}{120}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}