Solve for x
x = \frac{1375000}{5427} = 253\frac{1969}{5427} \approx 253.362815552
Graph
Share
Copied to clipboard
\frac{12}{40}\times 0.12\times \frac{0.45}{0.55}\left(2\left(1.2-0.48\right)\times 0.1-0.1^{2}\right)x=1
Expand \frac{1.2}{4} by multiplying both numerator and the denominator by 10.
\frac{3}{10}\times 0.12\times \frac{0.45}{0.55}\left(2\left(1.2-0.48\right)\times 0.1-0.1^{2}\right)x=1
Reduce the fraction \frac{12}{40} to lowest terms by extracting and canceling out 4.
\frac{3}{10}\times \frac{3}{25}\times \frac{0.45}{0.55}\left(2\left(1.2-0.48\right)\times 0.1-0.1^{2}\right)x=1
Convert decimal number 0.12 to fraction \frac{12}{100}. Reduce the fraction \frac{12}{100} to lowest terms by extracting and canceling out 4.
\frac{3\times 3}{10\times 25}\times \frac{0.45}{0.55}\left(2\left(1.2-0.48\right)\times 0.1-0.1^{2}\right)x=1
Multiply \frac{3}{10} times \frac{3}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{250}\times \frac{0.45}{0.55}\left(2\left(1.2-0.48\right)\times 0.1-0.1^{2}\right)x=1
Do the multiplications in the fraction \frac{3\times 3}{10\times 25}.
\frac{9}{250}\times \frac{45}{55}\left(2\left(1.2-0.48\right)\times 0.1-0.1^{2}\right)x=1
Expand \frac{0.45}{0.55} by multiplying both numerator and the denominator by 100.
\frac{9}{250}\times \frac{9}{11}\left(2\left(1.2-0.48\right)\times 0.1-0.1^{2}\right)x=1
Reduce the fraction \frac{45}{55} to lowest terms by extracting and canceling out 5.
\frac{9\times 9}{250\times 11}\left(2\left(1.2-0.48\right)\times 0.1-0.1^{2}\right)x=1
Multiply \frac{9}{250} times \frac{9}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{81}{2750}\left(2\left(1.2-0.48\right)\times 0.1-0.1^{2}\right)x=1
Do the multiplications in the fraction \frac{9\times 9}{250\times 11}.
\frac{81}{2750}\left(2\times 0.72\times 0.1-0.1^{2}\right)x=1
Subtract 0.48 from 1.2 to get 0.72.
\frac{81}{2750}\left(1.44\times 0.1-0.1^{2}\right)x=1
Multiply 2 and 0.72 to get 1.44.
\frac{81}{2750}\left(0.144-0.1^{2}\right)x=1
Multiply 1.44 and 0.1 to get 0.144.
\frac{81}{2750}\left(0.144-0.01\right)x=1
Calculate 0.1 to the power of 2 and get 0.01.
\frac{81}{2750}\times 0.134x=1
Subtract 0.01 from 0.144 to get 0.134.
\frac{81}{2750}\times \frac{67}{500}x=1
Convert decimal number 0.134 to fraction \frac{134}{1000}. Reduce the fraction \frac{134}{1000} to lowest terms by extracting and canceling out 2.
\frac{81\times 67}{2750\times 500}x=1
Multiply \frac{81}{2750} times \frac{67}{500} by multiplying numerator times numerator and denominator times denominator.
\frac{5427}{1375000}x=1
Do the multiplications in the fraction \frac{81\times 67}{2750\times 500}.
x=1\times \frac{1375000}{5427}
Multiply both sides by \frac{1375000}{5427}, the reciprocal of \frac{5427}{1375000}.
x=\frac{1375000}{5427}
Multiply 1 and \frac{1375000}{5427} to get \frac{1375000}{5427}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}