Solve for x
x=\frac{20z}{21}+\frac{8}{105}
Solve for z
z=\frac{21x}{20}-0.08
Share
Copied to clipboard
1.1x-0.56=0.05x-0.48+z
Use the distributive property to multiply -0.25 by -0.2x+1.92.
1.1x-0.56-0.05x=-0.48+z
Subtract 0.05x from both sides.
1.05x-0.56=-0.48+z
Combine 1.1x and -0.05x to get 1.05x.
1.05x=-0.48+z+0.56
Add 0.56 to both sides.
1.05x=0.08+z
Add -0.48 and 0.56 to get 0.08.
1.05x=z+0.08
The equation is in standard form.
\frac{1.05x}{1.05}=\frac{z+0.08}{1.05}
Divide both sides of the equation by 1.05, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{z+0.08}{1.05}
Dividing by 1.05 undoes the multiplication by 1.05.
x=\frac{20z}{21}+\frac{8}{105}
Divide 0.08+z by 1.05 by multiplying 0.08+z by the reciprocal of 1.05.
1.1x-0.56=0.05x-0.48+z
Use the distributive property to multiply -0.25 by -0.2x+1.92.
0.05x-0.48+z=1.1x-0.56
Swap sides so that all variable terms are on the left hand side.
-0.48+z=1.1x-0.56-0.05x
Subtract 0.05x from both sides.
-0.48+z=1.05x-0.56
Combine 1.1x and -0.05x to get 1.05x.
z=1.05x-0.56+0.48
Add 0.48 to both sides.
z=1.05x-0.08
Add -0.56 and 0.48 to get -0.08.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}