Solve for Y
Y = \frac{36808}{5967} = 6\frac{1006}{5967} \approx 6.168593933
Share
Copied to clipboard
1.18=\frac{47.736\left(Y+1\right)}{96+194}
Multiply 0.52 and 91.8 to get 47.736.
1.18=\frac{47.736\left(Y+1\right)}{290}
Add 96 and 194 to get 290.
1.18=\frac{5967}{36250}\left(Y+1\right)
Divide 47.736\left(Y+1\right) by 290 to get \frac{5967}{36250}\left(Y+1\right).
1.18=\frac{5967}{36250}Y+\frac{5967}{36250}
Use the distributive property to multiply \frac{5967}{36250} by Y+1.
\frac{5967}{36250}Y+\frac{5967}{36250}=1.18
Swap sides so that all variable terms are on the left hand side.
\frac{5967}{36250}Y=1.18-\frac{5967}{36250}
Subtract \frac{5967}{36250} from both sides.
\frac{5967}{36250}Y=\frac{18404}{18125}
Subtract \frac{5967}{36250} from 1.18 to get \frac{18404}{18125}.
Y=\frac{\frac{18404}{18125}}{\frac{5967}{36250}}
Divide both sides by \frac{5967}{36250}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}