Solve for x
x=-\frac{5y}{8}-\frac{9z}{28}+3.5
Solve for y
y=-\frac{8x}{5}-\frac{18z}{35}+5.6
Share
Copied to clipboard
1.12x+0.36z=3.92-0.7y
Subtract 0.7y from both sides.
1.12x=3.92-0.7y-0.36z
Subtract 0.36z from both sides.
1.12x=-\frac{7y}{10}-\frac{9z}{25}+3.92
The equation is in standard form.
\frac{1.12x}{1.12}=\frac{-\frac{7y}{10}-\frac{9z}{25}+3.92}{1.12}
Divide both sides of the equation by 1.12, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{-\frac{7y}{10}-\frac{9z}{25}+3.92}{1.12}
Dividing by 1.12 undoes the multiplication by 1.12.
x=-\frac{5y}{8}-\frac{9z}{28}+\frac{7}{2}
Divide 3.92-\frac{7y}{10}-\frac{9z}{25} by 1.12 by multiplying 3.92-\frac{7y}{10}-\frac{9z}{25} by the reciprocal of 1.12.
0.7y+0.36z=3.92-1.12x
Subtract 1.12x from both sides.
0.7y=3.92-1.12x-0.36z
Subtract 0.36z from both sides.
0.7y=\frac{98-9z-28x}{25}
The equation is in standard form.
\frac{0.7y}{0.7}=\frac{98-9z-28x}{0.7\times 25}
Divide both sides of the equation by 0.7, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{98-9z-28x}{0.7\times 25}
Dividing by 0.7 undoes the multiplication by 0.7.
y=-\frac{8x}{5}-\frac{18z}{35}+\frac{28}{5}
Divide \frac{98-28x-9z}{25} by 0.7 by multiplying \frac{98-28x-9z}{25} by the reciprocal of 0.7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}