Solve for x
x = \frac{327500 \sqrt{3} + 416500}{26963} \approx 36.485058765
Graph
Share
Copied to clipboard
1.11x-5=\frac{\left(x+25\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{x+25}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
1.11x-5=\frac{\left(x+25\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
1.11x-5=\frac{x\sqrt{3}+25\sqrt{3}}{3}
Use the distributive property to multiply x+25 by \sqrt{3}.
1.11x-5-\frac{x\sqrt{3}+25\sqrt{3}}{3}=0
Subtract \frac{x\sqrt{3}+25\sqrt{3}}{3} from both sides.
1.11x-\frac{x\sqrt{3}+25\sqrt{3}}{3}=5
Add 5 to both sides. Anything plus zero gives itself.
3.33x-\left(x\sqrt{3}+25\sqrt{3}\right)=15
Multiply both sides of the equation by 3.
3.33x-x\sqrt{3}-25\sqrt{3}=15
To find the opposite of x\sqrt{3}+25\sqrt{3}, find the opposite of each term.
3.33x-x\sqrt{3}=15+25\sqrt{3}
Add 25\sqrt{3} to both sides.
\left(3.33-\sqrt{3}\right)x=15+25\sqrt{3}
Combine all terms containing x.
\left(3.33-\sqrt{3}\right)x=25\sqrt{3}+15
The equation is in standard form.
\frac{\left(3.33-\sqrt{3}\right)x}{3.33-\sqrt{3}}=\frac{25\sqrt{3}+15}{3.33-\sqrt{3}}
Divide both sides by 3.33-\sqrt{3}.
x=\frac{25\sqrt{3}+15}{3.33-\sqrt{3}}
Dividing by 3.33-\sqrt{3} undoes the multiplication by 3.33-\sqrt{3}.
x=\frac{327500\sqrt{3}+416500}{26963}
Divide 15+25\sqrt{3} by 3.33-\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}