Solve for H
H=\frac{620}{91p}
p\neq 0
Solve for p
p=\frac{620}{91H}
H\neq 0
Share
Copied to clipboard
0.05915pH+0.6994=1.1024
Swap sides so that all variable terms are on the left hand side.
0.05915pH=1.1024-0.6994
Subtract 0.6994 from both sides.
0.05915pH=0.403
Subtract 0.6994 from 1.1024 to get 0.403.
\frac{1183p}{20000}H=\frac{403}{1000}
The equation is in standard form.
\frac{20000\times \frac{1183p}{20000}H}{1183p}=\frac{\frac{403}{1000}\times 20000}{1183p}
Divide both sides by 0.05915p.
H=\frac{\frac{403}{1000}\times 20000}{1183p}
Dividing by 0.05915p undoes the multiplication by 0.05915p.
H=\frac{620}{91p}
Divide \frac{403}{1000} by 0.05915p.
0.05915pH+0.6994=1.1024
Swap sides so that all variable terms are on the left hand side.
0.05915pH=1.1024-0.6994
Subtract 0.6994 from both sides.
0.05915pH=0.403
Subtract 0.6994 from 1.1024 to get 0.403.
\frac{1183H}{20000}p=\frac{403}{1000}
The equation is in standard form.
\frac{20000\times \frac{1183H}{20000}p}{1183H}=\frac{\frac{403}{1000}\times 20000}{1183H}
Divide both sides by 0.05915H.
p=\frac{\frac{403}{1000}\times 20000}{1183H}
Dividing by 0.05915H undoes the multiplication by 0.05915H.
p=\frac{620}{91H}
Divide \frac{403}{1000} by 0.05915H.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}