Solve for x
x=\log_{1.3}\left(\frac{246}{11}\right)\approx 11.843976806
Solve for x (complex solution)
x=\frac{i\times 2\pi n_{1}}{\ln(1.3)}+\log_{1.3}\left(\frac{246}{11}\right)
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
1.1\times 1.3^{x}-14=10.6
Use the rules of exponents and logarithms to solve the equation.
1.1\times 1.3^{x}=24.6
Add 14 to both sides of the equation.
1.3^{x}=\frac{246}{11}
Divide both sides of the equation by 1.1, which is the same as multiplying both sides by the reciprocal of the fraction.
\log(1.3^{x})=\log(\frac{246}{11})
Take the logarithm of both sides of the equation.
x\log(1.3)=\log(\frac{246}{11})
The logarithm of a number raised to a power is the power times the logarithm of the number.
x=\frac{\log(\frac{246}{11})}{\log(1.3)}
Divide both sides by \log(1.3).
x=\log_{1.3}\left(\frac{246}{11}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}