Solve for x
x = \frac{248400}{401} = 619\frac{181}{401} \approx 619.451371571
Graph
Share
Copied to clipboard
440x=x\times 1242-400\times 1242
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 400x, the least common multiple of 400,x.
440x=x\times 1242-496800
Multiply -400 and 1242 to get -496800.
440x-x\times 1242=-496800
Subtract x\times 1242 from both sides.
-802x=-496800
Combine 440x and -x\times 1242 to get -802x.
x=\frac{-496800}{-802}
Divide both sides by -802.
x=\frac{248400}{401}
Reduce the fraction \frac{-496800}{-802} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}