Solve for x
x=\frac{5}{670252}\approx 0.00000746
Graph
Share
Copied to clipboard
1.096776\times 10^{7}\left(\frac{1}{5^{2}}-\frac{1}{6^{2}}\right)x=1
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
1.096776\times 10000000\left(\frac{1}{5^{2}}-\frac{1}{6^{2}}\right)x=1
Calculate 10 to the power of 7 and get 10000000.
10967760\left(\frac{1}{5^{2}}-\frac{1}{6^{2}}\right)x=1
Multiply 1.096776 and 10000000 to get 10967760.
10967760\left(\frac{1}{25}-\frac{1}{6^{2}}\right)x=1
Calculate 5 to the power of 2 and get 25.
10967760\left(\frac{1}{25}-\frac{1}{36}\right)x=1
Calculate 6 to the power of 2 and get 36.
10967760\left(\frac{36}{900}-\frac{25}{900}\right)x=1
Least common multiple of 25 and 36 is 900. Convert \frac{1}{25} and \frac{1}{36} to fractions with denominator 900.
10967760\times \frac{36-25}{900}x=1
Since \frac{36}{900} and \frac{25}{900} have the same denominator, subtract them by subtracting their numerators.
10967760\times \frac{11}{900}x=1
Subtract 25 from 36 to get 11.
\frac{10967760\times 11}{900}x=1
Express 10967760\times \frac{11}{900} as a single fraction.
\frac{120645360}{900}x=1
Multiply 10967760 and 11 to get 120645360.
\frac{670252}{5}x=1
Reduce the fraction \frac{120645360}{900} to lowest terms by extracting and canceling out 180.
x=1\times \frac{5}{670252}
Multiply both sides by \frac{5}{670252}, the reciprocal of \frac{670252}{5}.
x=\frac{5}{670252}
Multiply 1 and \frac{5}{670252} to get \frac{5}{670252}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}