Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1.072=\left(2x+0.15\right)^{2}
Multiply 2x+0.15 and 2x+0.15 to get \left(2x+0.15\right)^{2}.
1.072=4x^{2}+0.6x+0.0225
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+0.15\right)^{2}.
4x^{2}+0.6x+0.0225=1.072
Swap sides so that all variable terms are on the left hand side.
4x^{2}+0.6x+0.0225-1.072=0
Subtract 1.072 from both sides.
4x^{2}+0.6x-1.0495=0
Subtract 1.072 from 0.0225 to get -1.0495.
x=\frac{-0.6±\sqrt{0.6^{2}-4\times 4\left(-1.0495\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 0.6 for b, and -1.0495 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-0.6±\sqrt{0.36-4\times 4\left(-1.0495\right)}}{2\times 4}
Square 0.6 by squaring both the numerator and the denominator of the fraction.
x=\frac{-0.6±\sqrt{0.36-16\left(-1.0495\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-0.6±\sqrt{0.36+16.792}}{2\times 4}
Multiply -16 times -1.0495.
x=\frac{-0.6±\sqrt{17.152}}{2\times 4}
Add 0.36 to 16.792 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-0.6±\frac{4\sqrt{670}}{25}}{2\times 4}
Take the square root of 17.152.
x=\frac{-0.6±\frac{4\sqrt{670}}{25}}{8}
Multiply 2 times 4.
x=\frac{\frac{4\sqrt{670}}{25}-\frac{3}{5}}{8}
Now solve the equation x=\frac{-0.6±\frac{4\sqrt{670}}{25}}{8} when ± is plus. Add -0.6 to \frac{4\sqrt{670}}{25}.
x=\frac{\sqrt{670}}{50}-\frac{3}{40}
Divide -\frac{3}{5}+\frac{4\sqrt{670}}{25} by 8.
x=\frac{-\frac{4\sqrt{670}}{25}-\frac{3}{5}}{8}
Now solve the equation x=\frac{-0.6±\frac{4\sqrt{670}}{25}}{8} when ± is minus. Subtract \frac{4\sqrt{670}}{25} from -0.6.
x=-\frac{\sqrt{670}}{50}-\frac{3}{40}
Divide -\frac{3}{5}-\frac{4\sqrt{670}}{25} by 8.
x=\frac{\sqrt{670}}{50}-\frac{3}{40} x=-\frac{\sqrt{670}}{50}-\frac{3}{40}
The equation is now solved.
1.072=\left(2x+0.15\right)^{2}
Multiply 2x+0.15 and 2x+0.15 to get \left(2x+0.15\right)^{2}.
1.072=4x^{2}+0.6x+0.0225
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+0.15\right)^{2}.
4x^{2}+0.6x+0.0225=1.072
Swap sides so that all variable terms are on the left hand side.
4x^{2}+0.6x=1.072-0.0225
Subtract 0.0225 from both sides.
4x^{2}+0.6x=1.0495
Subtract 0.0225 from 1.072 to get 1.0495.
\frac{4x^{2}+0.6x}{4}=\frac{1.0495}{4}
Divide both sides by 4.
x^{2}+\frac{0.6}{4}x=\frac{1.0495}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+0.15x=\frac{1.0495}{4}
Divide 0.6 by 4.
x^{2}+0.15x=0.262375
Divide 1.0495 by 4.
x^{2}+0.15x+0.075^{2}=0.262375+0.075^{2}
Divide 0.15, the coefficient of the x term, by 2 to get 0.075. Then add the square of 0.075 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+0.15x+0.005625=0.262375+0.005625
Square 0.075 by squaring both the numerator and the denominator of the fraction.
x^{2}+0.15x+0.005625=0.268
Add 0.262375 to 0.005625 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+0.075\right)^{2}=0.268
Factor x^{2}+0.15x+0.005625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+0.075\right)^{2}}=\sqrt{0.268}
Take the square root of both sides of the equation.
x+0.075=\frac{\sqrt{670}}{50} x+0.075=-\frac{\sqrt{670}}{50}
Simplify.
x=\frac{\sqrt{670}}{50}-\frac{3}{40} x=-\frac{\sqrt{670}}{50}-\frac{3}{40}
Subtract 0.075 from both sides of the equation.