Solve for t
t=\frac{40\sqrt{15}}{21}+\frac{200}{7}\approx 35.948539707
t=-\frac{40\sqrt{15}}{21}+\frac{200}{7}\approx 21.194317436
Share
Copied to clipboard
1.05t^{2}-60t+800=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 1.05\times 800}}{2\times 1.05}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1.05 for a, -60 for b, and 800 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-\left(-60\right)±\sqrt{3600-4\times 1.05\times 800}}{2\times 1.05}
Square -60.
t=\frac{-\left(-60\right)±\sqrt{3600-4.2\times 800}}{2\times 1.05}
Multiply -4 times 1.05.
t=\frac{-\left(-60\right)±\sqrt{3600-3360}}{2\times 1.05}
Multiply -4.2 times 800.
t=\frac{-\left(-60\right)±\sqrt{240}}{2\times 1.05}
Add 3600 to -3360.
t=\frac{-\left(-60\right)±4\sqrt{15}}{2\times 1.05}
Take the square root of 240.
t=\frac{60±4\sqrt{15}}{2\times 1.05}
The opposite of -60 is 60.
t=\frac{60±4\sqrt{15}}{2.1}
Multiply 2 times 1.05.
t=\frac{4\sqrt{15}+60}{2.1}
Now solve the equation t=\frac{60±4\sqrt{15}}{2.1} when ± is plus. Add 60 to 4\sqrt{15}.
t=\frac{40\sqrt{15}}{21}+\frac{200}{7}
Divide 60+4\sqrt{15} by 2.1 by multiplying 60+4\sqrt{15} by the reciprocal of 2.1.
t=\frac{60-4\sqrt{15}}{2.1}
Now solve the equation t=\frac{60±4\sqrt{15}}{2.1} when ± is minus. Subtract 4\sqrt{15} from 60.
t=-\frac{40\sqrt{15}}{21}+\frac{200}{7}
Divide 60-4\sqrt{15} by 2.1 by multiplying 60-4\sqrt{15} by the reciprocal of 2.1.
t=\frac{40\sqrt{15}}{21}+\frac{200}{7} t=-\frac{40\sqrt{15}}{21}+\frac{200}{7}
The equation is now solved.
1.05t^{2}-60t+800=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
1.05t^{2}-60t+800-800=-800
Subtract 800 from both sides of the equation.
1.05t^{2}-60t=-800
Subtracting 800 from itself leaves 0.
\frac{1.05t^{2}-60t}{1.05}=-\frac{800}{1.05}
Divide both sides of the equation by 1.05, which is the same as multiplying both sides by the reciprocal of the fraction.
t^{2}+\left(-\frac{60}{1.05}\right)t=-\frac{800}{1.05}
Dividing by 1.05 undoes the multiplication by 1.05.
t^{2}-\frac{400}{7}t=-\frac{800}{1.05}
Divide -60 by 1.05 by multiplying -60 by the reciprocal of 1.05.
t^{2}-\frac{400}{7}t=-\frac{16000}{21}
Divide -800 by 1.05 by multiplying -800 by the reciprocal of 1.05.
t^{2}-\frac{400}{7}t+\left(-\frac{200}{7}\right)^{2}=-\frac{16000}{21}+\left(-\frac{200}{7}\right)^{2}
Divide -\frac{400}{7}, the coefficient of the x term, by 2 to get -\frac{200}{7}. Then add the square of -\frac{200}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
t^{2}-\frac{400}{7}t+\frac{40000}{49}=-\frac{16000}{21}+\frac{40000}{49}
Square -\frac{200}{7} by squaring both the numerator and the denominator of the fraction.
t^{2}-\frac{400}{7}t+\frac{40000}{49}=\frac{8000}{147}
Add -\frac{16000}{21} to \frac{40000}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(t-\frac{200}{7}\right)^{2}=\frac{8000}{147}
Factor t^{2}-\frac{400}{7}t+\frac{40000}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t-\frac{200}{7}\right)^{2}}=\sqrt{\frac{8000}{147}}
Take the square root of both sides of the equation.
t-\frac{200}{7}=\frac{40\sqrt{15}}{21} t-\frac{200}{7}=-\frac{40\sqrt{15}}{21}
Simplify.
t=\frac{40\sqrt{15}}{21}+\frac{200}{7} t=-\frac{40\sqrt{15}}{21}+\frac{200}{7}
Add \frac{200}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}