Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

31.5r^{2}=7.065
Multiply 1.05 and 30 to get 31.5.
r^{2}=\frac{7.065}{31.5}
Divide both sides by 31.5.
r^{2}=\frac{7065}{31500}
Expand \frac{7.065}{31.5} by multiplying both numerator and the denominator by 1000.
r^{2}=\frac{157}{700}
Reduce the fraction \frac{7065}{31500} to lowest terms by extracting and canceling out 45.
r=\frac{\sqrt{1099}}{70} r=-\frac{\sqrt{1099}}{70}
Take the square root of both sides of the equation.
31.5r^{2}=7.065
Multiply 1.05 and 30 to get 31.5.
31.5r^{2}-7.065=0
Subtract 7.065 from both sides.
r=\frac{0±\sqrt{0^{2}-4\times 31.5\left(-7.065\right)}}{2\times 31.5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 31.5 for a, 0 for b, and -7.065 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\times 31.5\left(-7.065\right)}}{2\times 31.5}
Square 0.
r=\frac{0±\sqrt{-126\left(-7.065\right)}}{2\times 31.5}
Multiply -4 times 31.5.
r=\frac{0±\sqrt{890.19}}{2\times 31.5}
Multiply -126 times -7.065.
r=\frac{0±\frac{9\sqrt{1099}}{10}}{2\times 31.5}
Take the square root of 890.19.
r=\frac{0±\frac{9\sqrt{1099}}{10}}{63}
Multiply 2 times 31.5.
r=\frac{\sqrt{1099}}{70}
Now solve the equation r=\frac{0±\frac{9\sqrt{1099}}{10}}{63} when ± is plus.
r=-\frac{\sqrt{1099}}{70}
Now solve the equation r=\frac{0±\frac{9\sqrt{1099}}{10}}{63} when ± is minus.
r=\frac{\sqrt{1099}}{70} r=-\frac{\sqrt{1099}}{70}
The equation is now solved.