Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1-x+64x^{2}=-48x+9
Add 64x^{2} to both sides.
1-x+64x^{2}+48x=9
Add 48x to both sides.
1+47x+64x^{2}=9
Combine -x and 48x to get 47x.
1+47x+64x^{2}-9=0
Subtract 9 from both sides.
-8+47x+64x^{2}=0
Subtract 9 from 1 to get -8.
64x^{2}+47x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-47±\sqrt{47^{2}-4\times 64\left(-8\right)}}{2\times 64}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 64 for a, 47 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-47±\sqrt{2209-4\times 64\left(-8\right)}}{2\times 64}
Square 47.
x=\frac{-47±\sqrt{2209-256\left(-8\right)}}{2\times 64}
Multiply -4 times 64.
x=\frac{-47±\sqrt{2209+2048}}{2\times 64}
Multiply -256 times -8.
x=\frac{-47±\sqrt{4257}}{2\times 64}
Add 2209 to 2048.
x=\frac{-47±3\sqrt{473}}{2\times 64}
Take the square root of 4257.
x=\frac{-47±3\sqrt{473}}{128}
Multiply 2 times 64.
x=\frac{3\sqrt{473}-47}{128}
Now solve the equation x=\frac{-47±3\sqrt{473}}{128} when ± is plus. Add -47 to 3\sqrt{473}.
x=\frac{-3\sqrt{473}-47}{128}
Now solve the equation x=\frac{-47±3\sqrt{473}}{128} when ± is minus. Subtract 3\sqrt{473} from -47.
x=\frac{3\sqrt{473}-47}{128} x=\frac{-3\sqrt{473}-47}{128}
The equation is now solved.
1-x+64x^{2}=-48x+9
Add 64x^{2} to both sides.
1-x+64x^{2}+48x=9
Add 48x to both sides.
1+47x+64x^{2}=9
Combine -x and 48x to get 47x.
47x+64x^{2}=9-1
Subtract 1 from both sides.
47x+64x^{2}=8
Subtract 1 from 9 to get 8.
64x^{2}+47x=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{64x^{2}+47x}{64}=\frac{8}{64}
Divide both sides by 64.
x^{2}+\frac{47}{64}x=\frac{8}{64}
Dividing by 64 undoes the multiplication by 64.
x^{2}+\frac{47}{64}x=\frac{1}{8}
Reduce the fraction \frac{8}{64} to lowest terms by extracting and canceling out 8.
x^{2}+\frac{47}{64}x+\left(\frac{47}{128}\right)^{2}=\frac{1}{8}+\left(\frac{47}{128}\right)^{2}
Divide \frac{47}{64}, the coefficient of the x term, by 2 to get \frac{47}{128}. Then add the square of \frac{47}{128} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{47}{64}x+\frac{2209}{16384}=\frac{1}{8}+\frac{2209}{16384}
Square \frac{47}{128} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{47}{64}x+\frac{2209}{16384}=\frac{4257}{16384}
Add \frac{1}{8} to \frac{2209}{16384} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{47}{128}\right)^{2}=\frac{4257}{16384}
Factor x^{2}+\frac{47}{64}x+\frac{2209}{16384}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{47}{128}\right)^{2}}=\sqrt{\frac{4257}{16384}}
Take the square root of both sides of the equation.
x+\frac{47}{128}=\frac{3\sqrt{473}}{128} x+\frac{47}{128}=-\frac{3\sqrt{473}}{128}
Simplify.
x=\frac{3\sqrt{473}-47}{128} x=\frac{-3\sqrt{473}-47}{128}
Subtract \frac{47}{128} from both sides of the equation.