Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1-5x+15+3x-3\left(3x-\left(5-x\right)-1\right)=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Use the distributive property to multiply -5 by x-3.
16-5x+3x-3\left(3x-\left(5-x\right)-1\right)=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Add 1 and 15 to get 16.
16-2x-3\left(3x-\left(5-x\right)-1\right)=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Combine -5x and 3x to get -2x.
16-2x-3\left(3x-5-\left(-x\right)-1\right)=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
To find the opposite of 5-x, find the opposite of each term.
16-2x-3\left(3x-5+x-1\right)=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
The opposite of -x is x.
16-2x-3\left(4x-5-1\right)=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Combine 3x and x to get 4x.
16-2x-3\left(4x-6\right)=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Subtract 1 from -5 to get -6.
16-2x-12x+18=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Use the distributive property to multiply -3 by 4x-6.
16-14x+18=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Combine -2x and -12x to get -14x.
34-14x=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Add 16 and 18 to get 34.
34-14x=\left(-\left(1-5x+15+3x\right)\right)\times 5
Use the distributive property to multiply -5 by x-3.
34-14x=\left(-\left(16-5x+3x\right)\right)\times 5
Add 1 and 15 to get 16.
34-14x=\left(-\left(16-2x\right)\right)\times 5
Combine -5x and 3x to get -2x.
34-14x=\left(-16-\left(-2x\right)\right)\times 5
To find the opposite of 16-2x, find the opposite of each term.
34-14x=\left(-16+2x\right)\times 5
The opposite of -2x is 2x.
34-14x=-80+10x
Use the distributive property to multiply -16+2x by 5.
34-14x-10x=-80
Subtract 10x from both sides.
34-24x=-80
Combine -14x and -10x to get -24x.
-24x=-80-34
Subtract 34 from both sides.
-24x=-114
Subtract 34 from -80 to get -114.
x=\frac{-114}{-24}
Divide both sides by -24.
x=\frac{19}{4}
Reduce the fraction \frac{-114}{-24} to lowest terms by extracting and canceling out -6.