Solve for x
x = \frac{19}{4} = 4\frac{3}{4} = 4.75
Graph
Share
Copied to clipboard
1-5x+15+3x-3\left(3x-\left(5-x\right)-1\right)=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Use the distributive property to multiply -5 by x-3.
16-5x+3x-3\left(3x-\left(5-x\right)-1\right)=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Add 1 and 15 to get 16.
16-2x-3\left(3x-\left(5-x\right)-1\right)=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Combine -5x and 3x to get -2x.
16-2x-3\left(3x-5-\left(-x\right)-1\right)=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
To find the opposite of 5-x, find the opposite of each term.
16-2x-3\left(3x-5+x-1\right)=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
The opposite of -x is x.
16-2x-3\left(4x-5-1\right)=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Combine 3x and x to get 4x.
16-2x-3\left(4x-6\right)=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Subtract 1 from -5 to get -6.
16-2x-12x+18=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Use the distributive property to multiply -3 by 4x-6.
16-14x+18=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Combine -2x and -12x to get -14x.
34-14x=\left(-\left(1-5\left(x-3\right)+3x\right)\right)\times 5
Add 16 and 18 to get 34.
34-14x=\left(-\left(1-5x+15+3x\right)\right)\times 5
Use the distributive property to multiply -5 by x-3.
34-14x=\left(-\left(16-5x+3x\right)\right)\times 5
Add 1 and 15 to get 16.
34-14x=\left(-\left(16-2x\right)\right)\times 5
Combine -5x and 3x to get -2x.
34-14x=\left(-16-\left(-2x\right)\right)\times 5
To find the opposite of 16-2x, find the opposite of each term.
34-14x=\left(-16+2x\right)\times 5
The opposite of -2x is 2x.
34-14x=-80+10x
Use the distributive property to multiply -16+2x by 5.
34-14x-10x=-80
Subtract 10x from both sides.
34-24x=-80
Combine -14x and -10x to get -24x.
-24x=-80-34
Subtract 34 from both sides.
-24x=-114
Subtract 34 from -80 to get -114.
x=\frac{-114}{-24}
Divide both sides by -24.
x=\frac{19}{4}
Reduce the fraction \frac{-114}{-24} to lowest terms by extracting and canceling out -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}