Evaluate
-\frac{908819}{15200}\approx -59.790723684
Factor
-\frac{908819}{15200} = -59\frac{12019}{15200} = -59.790723684210526
Share
Copied to clipboard
1-\left(30.4-\frac{141}{30400}\right)\times 2
Expand \frac{0.141}{30.4} by multiplying both numerator and the denominator by 1000.
1-\left(\frac{152}{5}-\frac{141}{30400}\right)\times 2
Convert decimal number 30.4 to fraction \frac{304}{10}. Reduce the fraction \frac{304}{10} to lowest terms by extracting and canceling out 2.
1-\left(\frac{924160}{30400}-\frac{141}{30400}\right)\times 2
Least common multiple of 5 and 30400 is 30400. Convert \frac{152}{5} and \frac{141}{30400} to fractions with denominator 30400.
1-\frac{924160-141}{30400}\times 2
Since \frac{924160}{30400} and \frac{141}{30400} have the same denominator, subtract them by subtracting their numerators.
1-\frac{924019}{30400}\times 2
Subtract 141 from 924160 to get 924019.
1-\frac{924019\times 2}{30400}
Express \frac{924019}{30400}\times 2 as a single fraction.
1-\frac{1848038}{30400}
Multiply 924019 and 2 to get 1848038.
1-\frac{924019}{15200}
Reduce the fraction \frac{1848038}{30400} to lowest terms by extracting and canceling out 2.
\frac{15200}{15200}-\frac{924019}{15200}
Convert 1 to fraction \frac{15200}{15200}.
\frac{15200-924019}{15200}
Since \frac{15200}{15200} and \frac{924019}{15200} have the same denominator, subtract them by subtracting their numerators.
-\frac{908819}{15200}
Subtract 924019 from 15200 to get -908819.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}