Evaluate
\frac{71}{126}\approx 0.563492063
Factor
\frac{71}{2 \cdot 3 ^ {2} \cdot 7} = 0.5634920634920635
Share
Copied to clipboard
1-\left(\frac{5}{9}\times \frac{1}{2}\times \frac{3}{7}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
1-\left(\frac{5\times 1}{9\times 2}\times \frac{3}{7}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Multiply \frac{5}{9} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
1-\left(\frac{5}{18}\times \frac{3}{7}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Do the multiplications in the fraction \frac{5\times 1}{9\times 2}.
1-\left(\frac{5\times 3}{18\times 7}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Multiply \frac{5}{18} times \frac{3}{7} by multiplying numerator times numerator and denominator times denominator.
1-\left(\frac{15}{126}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Do the multiplications in the fraction \frac{5\times 3}{18\times 7}.
1-\left(\frac{5}{42}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Reduce the fraction \frac{15}{126} to lowest terms by extracting and canceling out 3.
1-\left(\frac{5}{42}+\frac{5}{9}\times \frac{1}{2}\times \frac{4}{7}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
1-\left(\frac{5}{42}+\frac{5\times 1}{9\times 2}\times \frac{4}{7}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Multiply \frac{5}{9} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
1-\left(\frac{5}{42}+\frac{5}{18}\times \frac{4}{7}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Do the multiplications in the fraction \frac{5\times 1}{9\times 2}.
1-\left(\frac{5}{42}+\frac{5\times 4}{18\times 7}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Multiply \frac{5}{18} times \frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
1-\left(\frac{5}{42}+\frac{20}{126}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Do the multiplications in the fraction \frac{5\times 4}{18\times 7}.
1-\left(\frac{5}{42}+\frac{10}{63}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Reduce the fraction \frac{20}{126} to lowest terms by extracting and canceling out 2.
1-\left(\frac{15}{126}+\frac{20}{126}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Least common multiple of 42 and 63 is 126. Convert \frac{5}{42} and \frac{10}{63} to fractions with denominator 126.
1-\left(\frac{15+20}{126}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Since \frac{15}{126} and \frac{20}{126} have the same denominator, add them by adding their numerators.
1-\left(\frac{35}{126}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Add 15 and 20 to get 35.
1-\left(\frac{5}{18}+\frac{5}{9}\times \frac{4}{8}\times \frac{4}{7}\right)
Reduce the fraction \frac{35}{126} to lowest terms by extracting and canceling out 7.
1-\left(\frac{5}{18}+\frac{5}{9}\times \frac{1}{2}\times \frac{4}{7}\right)
Reduce the fraction \frac{4}{8} to lowest terms by extracting and canceling out 4.
1-\left(\frac{5}{18}+\frac{5\times 1}{9\times 2}\times \frac{4}{7}\right)
Multiply \frac{5}{9} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
1-\left(\frac{5}{18}+\frac{5}{18}\times \frac{4}{7}\right)
Do the multiplications in the fraction \frac{5\times 1}{9\times 2}.
1-\left(\frac{5}{18}+\frac{5\times 4}{18\times 7}\right)
Multiply \frac{5}{18} times \frac{4}{7} by multiplying numerator times numerator and denominator times denominator.
1-\left(\frac{5}{18}+\frac{20}{126}\right)
Do the multiplications in the fraction \frac{5\times 4}{18\times 7}.
1-\left(\frac{5}{18}+\frac{10}{63}\right)
Reduce the fraction \frac{20}{126} to lowest terms by extracting and canceling out 2.
1-\left(\frac{35}{126}+\frac{20}{126}\right)
Least common multiple of 18 and 63 is 126. Convert \frac{5}{18} and \frac{10}{63} to fractions with denominator 126.
1-\frac{35+20}{126}
Since \frac{35}{126} and \frac{20}{126} have the same denominator, add them by adding their numerators.
1-\frac{55}{126}
Add 35 and 20 to get 55.
\frac{126}{126}-\frac{55}{126}
Convert 1 to fraction \frac{126}{126}.
\frac{126-55}{126}
Since \frac{126}{126} and \frac{55}{126} have the same denominator, subtract them by subtracting their numerators.
\frac{71}{126}
Subtract 55 from 126 to get 71.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}