Factor
\left(a-1\right)\left(a+1\right)\left(-a^{2}+a-1\right)\left(a^{2}+a+1\right)
Evaluate
\left(1-a^{2}\right)\left(\left(a^{2}+1\right)^{2}-a^{2}\right)
Share
Copied to clipboard
\left(1+a^{3}\right)\left(1-a^{3}\right)
Rewrite 1-a^{6} as 1^{2}-\left(-a^{3}\right)^{2}. The difference of squares can be factored using the rule: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right).
\left(a^{3}+1\right)\left(-a^{3}+1\right)
Reorder the terms.
\left(a+1\right)\left(a^{2}-a+1\right)
Consider a^{3}+1. Rewrite a^{3}+1 as a^{3}+1^{3}. The sum of cubes can be factored using the rule: p^{3}+q^{3}=\left(p+q\right)\left(p^{2}-pq+q^{2}\right).
\left(a-1\right)\left(-a^{2}-a-1\right)
Consider -a^{3}+1. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 1 and q divides the leading coefficient -1. One such root is 1. Factor the polynomial by dividing it by a-1.
\left(-a^{2}-a-1\right)\left(a-1\right)\left(a^{2}-a+1\right)\left(a+1\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: -a^{2}-a-1,a^{2}-a+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}