Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

1-\sqrt{3}-\frac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{2-\sqrt{3}} by multiplying numerator and denominator by 2+\sqrt{3}.
1-\sqrt{3}-\frac{2+\sqrt{3}}{2^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
1-\sqrt{3}-\frac{2+\sqrt{3}}{4-3}
Square 2. Square \sqrt{3}.
1-\sqrt{3}-\frac{2+\sqrt{3}}{1}
Subtract 3 from 4 to get 1.
1-\sqrt{3}-\left(2+\sqrt{3}\right)
Anything divided by one gives itself.
1-\sqrt{3}-2-\sqrt{3}
To find the opposite of 2+\sqrt{3}, find the opposite of each term.
-1-\sqrt{3}-\sqrt{3}
Subtract 2 from 1 to get -1.
-1-2\sqrt{3}
Combine -\sqrt{3} and -\sqrt{3} to get -2\sqrt{3}.