Evaluate
\frac{1076}{1001}\approx 1.074925075
Factor
\frac{269 \cdot 2 ^ {2}}{7 \cdot 11 \cdot 13} = 1\frac{75}{1001} = 1.074925074925075
Share
Copied to clipboard
1-\frac{-0.075}{1.001}
Subtract 7.016 from 6.941 to get -0.075.
1-\frac{-75}{1001}
Expand \frac{-0.075}{1.001} by multiplying both numerator and the denominator by 1000.
1-\left(-\frac{75}{1001}\right)
Fraction \frac{-75}{1001} can be rewritten as -\frac{75}{1001} by extracting the negative sign.
1+\frac{75}{1001}
The opposite of -\frac{75}{1001} is \frac{75}{1001}.
\frac{1001}{1001}+\frac{75}{1001}
Convert 1 to fraction \frac{1001}{1001}.
\frac{1001+75}{1001}
Since \frac{1001}{1001} and \frac{75}{1001} have the same denominator, add them by adding their numerators.
\frac{1076}{1001}
Add 1001 and 75 to get 1076.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}