Evaluate
\frac{1}{4}=0.25
Factor
\frac{1}{2 ^ {2}} = 0.25
Share
Copied to clipboard
1-\frac{3\sqrt{2}}{4\left(\sqrt{2}\right)^{2}}\sqrt{2}
Rationalize the denominator of \frac{3}{4\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
1-\frac{3\sqrt{2}}{4\times 2}\sqrt{2}
The square of \sqrt{2} is 2.
1-\frac{3\sqrt{2}}{8}\sqrt{2}
Multiply 4 and 2 to get 8.
1-\frac{3\sqrt{2}\sqrt{2}}{8}
Express \frac{3\sqrt{2}}{8}\sqrt{2} as a single fraction.
1-\frac{3\times 2}{8}
Multiply \sqrt{2} and \sqrt{2} to get 2.
1-\frac{6}{8}
Multiply 3 and 2 to get 6.
1-\frac{3}{4}
Reduce the fraction \frac{6}{8} to lowest terms by extracting and canceling out 2.
\frac{4}{4}-\frac{3}{4}
Convert 1 to fraction \frac{4}{4}.
\frac{4-3}{4}
Since \frac{4}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}
Subtract 3 from 4 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}