Solve for x
x<-\frac{6}{7}
Graph
Share
Copied to clipboard
5-\left(2x+1\right)>5x+10
Multiply both sides of the equation by 5. Since 5 is positive, the inequality direction remains the same.
5-2x-1>5x+10
To find the opposite of 2x+1, find the opposite of each term.
4-2x>5x+10
Subtract 1 from 5 to get 4.
4-2x-5x>10
Subtract 5x from both sides.
4-7x>10
Combine -2x and -5x to get -7x.
-7x>10-4
Subtract 4 from both sides.
-7x>6
Subtract 4 from 10 to get 6.
x<-\frac{6}{7}
Divide both sides by -7. Since -7 is negative, the inequality direction is changed.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}