Solve for p
p>\frac{14}{9}
Share
Copied to clipboard
28-7\left(2p-3\right)<4p+21
Multiply both sides of the equation by 28, the least common multiple of 4,7. Since 28 is positive, the inequality direction remains the same.
28-14p+21<4p+21
Use the distributive property to multiply -7 by 2p-3.
49-14p<4p+21
Add 28 and 21 to get 49.
49-14p-4p<21
Subtract 4p from both sides.
49-18p<21
Combine -14p and -4p to get -18p.
-18p<21-49
Subtract 49 from both sides.
-18p<-28
Subtract 49 from 21 to get -28.
p>\frac{-28}{-18}
Divide both sides by -18. Since -18 is negative, the inequality direction is changed.
p>\frac{14}{9}
Reduce the fraction \frac{-28}{-18} to lowest terms by extracting and canceling out -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}