Solve for x
x=10
Graph
Share
Copied to clipboard
1-\frac{1}{3}x-\frac{1}{3}\left(-7\right)=4\left(x-10\right)
Use the distributive property to multiply -\frac{1}{3} by x-7.
1-\frac{1}{3}x+\frac{-\left(-7\right)}{3}=4\left(x-10\right)
Express -\frac{1}{3}\left(-7\right) as a single fraction.
1-\frac{1}{3}x+\frac{7}{3}=4\left(x-10\right)
Multiply -1 and -7 to get 7.
\frac{3}{3}-\frac{1}{3}x+\frac{7}{3}=4\left(x-10\right)
Convert 1 to fraction \frac{3}{3}.
\frac{3+7}{3}-\frac{1}{3}x=4\left(x-10\right)
Since \frac{3}{3} and \frac{7}{3} have the same denominator, add them by adding their numerators.
\frac{10}{3}-\frac{1}{3}x=4\left(x-10\right)
Add 3 and 7 to get 10.
\frac{10}{3}-\frac{1}{3}x=4x-40
Use the distributive property to multiply 4 by x-10.
\frac{10}{3}-\frac{1}{3}x-4x=-40
Subtract 4x from both sides.
\frac{10}{3}-\frac{13}{3}x=-40
Combine -\frac{1}{3}x and -4x to get -\frac{13}{3}x.
-\frac{13}{3}x=-40-\frac{10}{3}
Subtract \frac{10}{3} from both sides.
-\frac{13}{3}x=-\frac{120}{3}-\frac{10}{3}
Convert -40 to fraction -\frac{120}{3}.
-\frac{13}{3}x=\frac{-120-10}{3}
Since -\frac{120}{3} and \frac{10}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{3}x=-\frac{130}{3}
Subtract 10 from -120 to get -130.
x=-\frac{130}{3}\left(-\frac{3}{13}\right)
Multiply both sides by -\frac{3}{13}, the reciprocal of -\frac{13}{3}.
x=\frac{-130\left(-3\right)}{3\times 13}
Multiply -\frac{130}{3} times -\frac{3}{13} by multiplying numerator times numerator and denominator times denominator.
x=\frac{390}{39}
Do the multiplications in the fraction \frac{-130\left(-3\right)}{3\times 13}.
x=10
Divide 390 by 39 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}