Evaluate
\frac{17}{2}=8.5
Factor
\frac{17}{2} = 8\frac{1}{2} = 8.5
Share
Copied to clipboard
\begin{array}{l}\phantom{164)}\phantom{1}\\164\overline{)1394}\\\end{array}
Use the 1^{st} digit 1 from dividend 1394
\begin{array}{l}\phantom{164)}0\phantom{2}\\164\overline{)1394}\\\end{array}
Since 1 is less than 164, use the next digit 3 from dividend 1394 and add 0 to the quotient
\begin{array}{l}\phantom{164)}0\phantom{3}\\164\overline{)1394}\\\end{array}
Use the 2^{nd} digit 3 from dividend 1394
\begin{array}{l}\phantom{164)}00\phantom{4}\\164\overline{)1394}\\\end{array}
Since 13 is less than 164, use the next digit 9 from dividend 1394 and add 0 to the quotient
\begin{array}{l}\phantom{164)}00\phantom{5}\\164\overline{)1394}\\\end{array}
Use the 3^{rd} digit 9 from dividend 1394
\begin{array}{l}\phantom{164)}000\phantom{6}\\164\overline{)1394}\\\end{array}
Since 139 is less than 164, use the next digit 4 from dividend 1394 and add 0 to the quotient
\begin{array}{l}\phantom{164)}000\phantom{7}\\164\overline{)1394}\\\end{array}
Use the 4^{th} digit 4 from dividend 1394
\begin{array}{l}\phantom{164)}0008\phantom{8}\\164\overline{)1394}\\\phantom{164)}\underline{\phantom{}1312\phantom{}}\\\phantom{164)99}82\\\end{array}
Find closest multiple of 164 to 1394. We see that 8 \times 164 = 1312 is the nearest. Now subtract 1312 from 1394 to get reminder 82. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }82
Since 82 is less than 164, stop the division. The reminder is 82. The topmost line 0008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}