Evaluate
6\sqrt{2}+\frac{2}{3}\approx 9.151948041
Share
Copied to clipboard
1+3\times 2\sqrt{2}-\frac{1}{3}-1+\sqrt{2}\sin(45)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
1+6\sqrt{2}-\frac{1}{3}-1+\sqrt{2}\sin(45)
Multiply 3 and 2 to get 6.
\frac{2}{3}+6\sqrt{2}-1+\sqrt{2}\sin(45)
Subtract \frac{1}{3} from 1 to get \frac{2}{3}.
-\frac{1}{3}+6\sqrt{2}+\sqrt{2}\sin(45)
Subtract 1 from \frac{2}{3} to get -\frac{1}{3}.
-\frac{1}{3}+6\sqrt{2}+\sqrt{2}\times \frac{\sqrt{2}}{2}
Get the value of \sin(45) from trigonometric values table.
-\frac{1}{3}+6\sqrt{2}+\frac{\sqrt{2}\sqrt{2}}{2}
Express \sqrt{2}\times \frac{\sqrt{2}}{2} as a single fraction.
-\frac{2}{6}+6\sqrt{2}+\frac{3\sqrt{2}\sqrt{2}}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply -\frac{1}{3} times \frac{2}{2}. Multiply \frac{\sqrt{2}\sqrt{2}}{2} times \frac{3}{3}.
\frac{-2+3\sqrt{2}\sqrt{2}}{6}+6\sqrt{2}
Since -\frac{2}{6} and \frac{3\sqrt{2}\sqrt{2}}{6} have the same denominator, add them by adding their numerators.
\frac{-2+6}{6}+6\sqrt{2}
Do the multiplications in -2+3\sqrt{2}\sqrt{2}.
\frac{4}{6}+6\sqrt{2}
Do the calculations in -2+6.
\frac{4}{6}+\frac{6\times 6\sqrt{2}}{6}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6\sqrt{2} times \frac{6}{6}.
\frac{4+6\times 6\sqrt{2}}{6}
Since \frac{4}{6} and \frac{6\times 6\sqrt{2}}{6} have the same denominator, add them by adding their numerators.
\frac{4+36\sqrt{2}}{6}
Do the multiplications in 4+6\times 6\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}