Evaluate
\frac{2\sqrt{3}}{3}-\frac{2\sqrt{6}}{3}+4\sqrt{2}-1\approx 4.178561626
Factor
\frac{2 \sqrt{3} + 12 \sqrt{2} - 2 \sqrt{6} - 3}{3} = 4.17856162601618
Share
Copied to clipboard
1+2\sqrt{2}-\frac{\left(2\sqrt{2}-2\right)\left(\sqrt{3}-3\right)}{3}
Express \left(2\sqrt{2}-2\right)\times \frac{\sqrt{3}-3}{3} as a single fraction.
1+2\sqrt{2}-\frac{2\sqrt{2}\sqrt{3}-6\sqrt{2}-2\sqrt{3}+6}{3}
Apply the distributive property by multiplying each term of 2\sqrt{2}-2 by each term of \sqrt{3}-3.
1+2\sqrt{2}-\frac{2\sqrt{6}-6\sqrt{2}-2\sqrt{3}+6}{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{3\left(1+2\sqrt{2}\right)}{3}-\frac{2\sqrt{6}-6\sqrt{2}-2\sqrt{3}+6}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+2\sqrt{2} times \frac{3}{3}.
\frac{3\left(1+2\sqrt{2}\right)-\left(2\sqrt{6}-6\sqrt{2}-2\sqrt{3}+6\right)}{3}
Since \frac{3\left(1+2\sqrt{2}\right)}{3} and \frac{2\sqrt{6}-6\sqrt{2}-2\sqrt{3}+6}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{3+6\sqrt{2}-2\sqrt{6}+6\sqrt{2}+2\sqrt{3}-6}{3}
Do the multiplications in 3\left(1+2\sqrt{2}\right)-\left(2\sqrt{6}-6\sqrt{2}-2\sqrt{3}+6\right).
\frac{-3+12\sqrt{2}-2\sqrt{6}+2\sqrt{3}}{3}
Do the calculations in 3+6\sqrt{2}-2\sqrt{6}+6\sqrt{2}+2\sqrt{3}-6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}