Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

1+2\sqrt{2}-\frac{\left(2\sqrt{2}-2\right)\left(\sqrt{3}-3\right)}{3}
Express \left(2\sqrt{2}-2\right)\times \frac{\sqrt{3}-3}{3} as a single fraction.
1+2\sqrt{2}-\frac{2\sqrt{2}\sqrt{3}-6\sqrt{2}-2\sqrt{3}+6}{3}
Apply the distributive property by multiplying each term of 2\sqrt{2}-2 by each term of \sqrt{3}-3.
1+2\sqrt{2}-\frac{2\sqrt{6}-6\sqrt{2}-2\sqrt{3}+6}{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{3\left(1+2\sqrt{2}\right)}{3}-\frac{2\sqrt{6}-6\sqrt{2}-2\sqrt{3}+6}{3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+2\sqrt{2} times \frac{3}{3}.
\frac{3\left(1+2\sqrt{2}\right)-\left(2\sqrt{6}-6\sqrt{2}-2\sqrt{3}+6\right)}{3}
Since \frac{3\left(1+2\sqrt{2}\right)}{3} and \frac{2\sqrt{6}-6\sqrt{2}-2\sqrt{3}+6}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{3+6\sqrt{2}-2\sqrt{6}+6\sqrt{2}+2\sqrt{3}-6}{3}
Do the multiplications in 3\left(1+2\sqrt{2}\right)-\left(2\sqrt{6}-6\sqrt{2}-2\sqrt{3}+6\right).
\frac{-3+12\sqrt{2}-2\sqrt{6}+2\sqrt{3}}{3}
Do the calculations in 3+6\sqrt{2}-2\sqrt{6}+6\sqrt{2}+2\sqrt{3}-6.