Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

1+1+x+1+x+1+x+1+x+x^{2}+x
Multiply x and x to get x^{2}.
2+x+1+x+1+x+1+x+x^{2}+x
Add 1 and 1 to get 2.
3+x+x+1+x+1+x+x^{2}+x
Add 2 and 1 to get 3.
3+2x+1+x+1+x+x^{2}+x
Combine x and x to get 2x.
4+2x+x+1+x+x^{2}+x
Add 3 and 1 to get 4.
4+3x+1+x+x^{2}+x
Combine 2x and x to get 3x.
5+3x+x+x^{2}+x
Add 4 and 1 to get 5.
5+4x+x^{2}+x
Combine 3x and x to get 4x.
5+5x+x^{2}
Combine 4x and x to get 5x.
factor(1+1+x+1+x+1+x+1+x+x^{2}+x)
Multiply x and x to get x^{2}.
factor(2+x+1+x+1+x+1+x+x^{2}+x)
Add 1 and 1 to get 2.
factor(3+x+x+1+x+1+x+x^{2}+x)
Add 2 and 1 to get 3.
factor(3+2x+1+x+1+x+x^{2}+x)
Combine x and x to get 2x.
factor(4+2x+x+1+x+x^{2}+x)
Add 3 and 1 to get 4.
factor(4+3x+1+x+x^{2}+x)
Combine 2x and x to get 3x.
factor(5+3x+x+x^{2}+x)
Add 4 and 1 to get 5.
factor(5+4x+x^{2}+x)
Combine 3x and x to get 4x.
factor(5+5x+x^{2})
Combine 4x and x to get 5x.
x^{2}+5x+5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 5}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{25-4\times 5}}{2}
Square 5.
x=\frac{-5±\sqrt{25-20}}{2}
Multiply -4 times 5.
x=\frac{-5±\sqrt{5}}{2}
Add 25 to -20.
x=\frac{\sqrt{5}-5}{2}
Now solve the equation x=\frac{-5±\sqrt{5}}{2} when ± is plus. Add -5 to \sqrt{5}.
x=\frac{-\sqrt{5}-5}{2}
Now solve the equation x=\frac{-5±\sqrt{5}}{2} when ± is minus. Subtract \sqrt{5} from -5.
x^{2}+5x+5=\left(x-\frac{\sqrt{5}-5}{2}\right)\left(x-\frac{-\sqrt{5}-5}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-5+\sqrt{5}}{2} for x_{1} and \frac{-5-\sqrt{5}}{2} for x_{2}.