Solve for x
x=\frac{2\sqrt{6}}{5}\approx 0.979795897
x=-\frac{2\sqrt{6}}{5}\approx -0.979795897
Graph
Share
Copied to clipboard
1+x^{2}=\frac{49}{25}
Reduce the fraction \frac{196}{100} to lowest terms by extracting and canceling out 4.
x^{2}=\frac{49}{25}-1
Subtract 1 from both sides.
x^{2}=\frac{24}{25}
Subtract 1 from \frac{49}{25} to get \frac{24}{25}.
x=\frac{2\sqrt{6}}{5} x=-\frac{2\sqrt{6}}{5}
Take the square root of both sides of the equation.
1+x^{2}=\frac{49}{25}
Reduce the fraction \frac{196}{100} to lowest terms by extracting and canceling out 4.
1+x^{2}-\frac{49}{25}=0
Subtract \frac{49}{25} from both sides.
-\frac{24}{25}+x^{2}=0
Subtract \frac{49}{25} from 1 to get -\frac{24}{25}.
x^{2}-\frac{24}{25}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{24}{25}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{24}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{24}{25}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{96}{25}}}{2}
Multiply -4 times -\frac{24}{25}.
x=\frac{0±\frac{4\sqrt{6}}{5}}{2}
Take the square root of \frac{96}{25}.
x=\frac{2\sqrt{6}}{5}
Now solve the equation x=\frac{0±\frac{4\sqrt{6}}{5}}{2} when ± is plus.
x=-\frac{2\sqrt{6}}{5}
Now solve the equation x=\frac{0±\frac{4\sqrt{6}}{5}}{2} when ± is minus.
x=\frac{2\sqrt{6}}{5} x=-\frac{2\sqrt{6}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}