Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1+x^{2}=\frac{49}{25}
Reduce the fraction \frac{196}{100} to lowest terms by extracting and canceling out 4.
x^{2}=\frac{49}{25}-1
Subtract 1 from both sides.
x^{2}=\frac{24}{25}
Subtract 1 from \frac{49}{25} to get \frac{24}{25}.
x=\frac{2\sqrt{6}}{5} x=-\frac{2\sqrt{6}}{5}
Take the square root of both sides of the equation.
1+x^{2}=\frac{49}{25}
Reduce the fraction \frac{196}{100} to lowest terms by extracting and canceling out 4.
1+x^{2}-\frac{49}{25}=0
Subtract \frac{49}{25} from both sides.
-\frac{24}{25}+x^{2}=0
Subtract \frac{49}{25} from 1 to get -\frac{24}{25}.
x^{2}-\frac{24}{25}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{24}{25}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{24}{25} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{24}{25}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{96}{25}}}{2}
Multiply -4 times -\frac{24}{25}.
x=\frac{0±\frac{4\sqrt{6}}{5}}{2}
Take the square root of \frac{96}{25}.
x=\frac{2\sqrt{6}}{5}
Now solve the equation x=\frac{0±\frac{4\sqrt{6}}{5}}{2} when ± is plus.
x=-\frac{2\sqrt{6}}{5}
Now solve the equation x=\frac{0±\frac{4\sqrt{6}}{5}}{2} when ± is minus.
x=\frac{2\sqrt{6}}{5} x=-\frac{2\sqrt{6}}{5}
The equation is now solved.