Solve for x
x=\frac{1}{3}\approx 0.333333333
Graph
Share
Copied to clipboard
1+\frac{25}{64}-\frac{5}{4}x+x^{2}=\frac{1}{4}+\left(1-x\right)^{2}+\frac{25}{64}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{5}{8}-x\right)^{2}.
\frac{89}{64}-\frac{5}{4}x+x^{2}=\frac{1}{4}+\left(1-x\right)^{2}+\frac{25}{64}
Add 1 and \frac{25}{64} to get \frac{89}{64}.
\frac{89}{64}-\frac{5}{4}x+x^{2}=\frac{1}{4}+1-2x+x^{2}+\frac{25}{64}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
\frac{89}{64}-\frac{5}{4}x+x^{2}=\frac{5}{4}-2x+x^{2}+\frac{25}{64}
Add \frac{1}{4} and 1 to get \frac{5}{4}.
\frac{89}{64}-\frac{5}{4}x+x^{2}=\frac{105}{64}-2x+x^{2}
Add \frac{5}{4} and \frac{25}{64} to get \frac{105}{64}.
\frac{89}{64}-\frac{5}{4}x+x^{2}+2x=\frac{105}{64}+x^{2}
Add 2x to both sides.
\frac{89}{64}+\frac{3}{4}x+x^{2}=\frac{105}{64}+x^{2}
Combine -\frac{5}{4}x and 2x to get \frac{3}{4}x.
\frac{89}{64}+\frac{3}{4}x+x^{2}-x^{2}=\frac{105}{64}
Subtract x^{2} from both sides.
\frac{89}{64}+\frac{3}{4}x=\frac{105}{64}
Combine x^{2} and -x^{2} to get 0.
\frac{3}{4}x=\frac{105}{64}-\frac{89}{64}
Subtract \frac{89}{64} from both sides.
\frac{3}{4}x=\frac{1}{4}
Subtract \frac{89}{64} from \frac{105}{64} to get \frac{1}{4}.
x=\frac{1}{4}\times \frac{4}{3}
Multiply both sides by \frac{4}{3}, the reciprocal of \frac{3}{4}.
x=\frac{1}{3}
Multiply \frac{1}{4} and \frac{4}{3} to get \frac{1}{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}