Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

1+\sqrt{3}-3\sqrt{3}\sqrt{\frac{3}{2}}
Multiply 1 and 3 to get 3.
1+\sqrt{3}-3\sqrt{3}\times \frac{\sqrt{3}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
1+\sqrt{3}-3\sqrt{3}\times \frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
1+\sqrt{3}-3\sqrt{3}\times \frac{\sqrt{3}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
1+\sqrt{3}-3\sqrt{3}\times \frac{\sqrt{6}}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
1+\sqrt{3}-\frac{3\sqrt{6}}{2}\sqrt{3}
Express 3\times \frac{\sqrt{6}}{2} as a single fraction.
1+\sqrt{3}-\frac{3\sqrt{6}\sqrt{3}}{2}
Express \frac{3\sqrt{6}}{2}\sqrt{3} as a single fraction.
1+\sqrt{3}-\frac{3\sqrt{3}\sqrt{2}\sqrt{3}}{2}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
1+\sqrt{3}-\frac{3\times 3\sqrt{2}}{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
1+\sqrt{3}-\frac{9\sqrt{2}}{2}
Multiply 3 and 3 to get 9.
\frac{2\left(1+\sqrt{3}\right)}{2}-\frac{9\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1+\sqrt{3} times \frac{2}{2}.
\frac{2\left(1+\sqrt{3}\right)-9\sqrt{2}}{2}
Since \frac{2\left(1+\sqrt{3}\right)}{2} and \frac{9\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{2+2\sqrt{3}-9\sqrt{2}}{2}
Do the multiplications in 2\left(1+\sqrt{3}\right)-9\sqrt{2}.