Evaluate
\frac{7}{6}\approx 1.166666667
Factor
\frac{7}{2 \cdot 3} = 1\frac{1}{6} = 1.1666666666666667
Share
Copied to clipboard
1+\frac{4\left(-5\right)}{5\times 2}+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Multiply \frac{4}{5} times -\frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
1+\frac{-20}{10}+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Do the multiplications in the fraction \frac{4\left(-5\right)}{5\times 2}.
1-2+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Divide -20 by 10 to get -2.
-1+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Subtract 2 from 1 to get -1.
-1+2\times \frac{2}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Divide 2 by \frac{3}{2} by multiplying 2 by the reciprocal of \frac{3}{2}.
-1+\frac{2\times 2}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Express 2\times \frac{2}{3} as a single fraction.
-1+\frac{4}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Multiply 2 and 2 to get 4.
-\frac{3}{3}+\frac{4}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Convert -1 to fraction -\frac{3}{3}.
\frac{-3+4}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Since -\frac{3}{3} and \frac{4}{3} have the same denominator, add them by adding their numerators.
\frac{1}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Add -3 and 4 to get 1.
\frac{1}{3}-2\left(\frac{4}{12}-\frac{9}{12}\right)
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{3}{4} to fractions with denominator 12.
\frac{1}{3}-2\times \frac{4-9}{12}
Since \frac{4}{12} and \frac{9}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}-2\left(-\frac{5}{12}\right)
Subtract 9 from 4 to get -5.
\frac{1}{3}-\frac{2\left(-5\right)}{12}
Express 2\left(-\frac{5}{12}\right) as a single fraction.
\frac{1}{3}-\frac{-10}{12}
Multiply 2 and -5 to get -10.
\frac{1}{3}-\left(-\frac{5}{6}\right)
Reduce the fraction \frac{-10}{12} to lowest terms by extracting and canceling out 2.
\frac{1}{3}+\frac{5}{6}
The opposite of -\frac{5}{6} is \frac{5}{6}.
\frac{2}{6}+\frac{5}{6}
Least common multiple of 3 and 6 is 6. Convert \frac{1}{3} and \frac{5}{6} to fractions with denominator 6.
\frac{2+5}{6}
Since \frac{2}{6} and \frac{5}{6} have the same denominator, add them by adding their numerators.
\frac{7}{6}
Add 2 and 5 to get 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}