Evaluate
1.0288125
Factor
\frac{31 \cdot 59 \cdot 3 ^ {2}}{2 ^ {7} \cdot 5 ^ {3}} = 1\frac{461}{16000} = 1.0288125
Share
Copied to clipboard
1+\frac{25}{600}\left(0+2\times 0.125+2\times 0.1094+0.2227\right)
Expand \frac{0.25}{6} by multiplying both numerator and the denominator by 100.
1+\frac{1}{24}\left(0+2\times 0.125+2\times 0.1094+0.2227\right)
Reduce the fraction \frac{25}{600} to lowest terms by extracting and canceling out 25.
1+\frac{1}{24}\left(0+0.25+2\times 0.1094+0.2227\right)
Multiply 2 and 0.125 to get 0.25.
1+\frac{1}{24}\left(0.25+2\times 0.1094+0.2227\right)
Add 0 and 0.25 to get 0.25.
1+\frac{1}{24}\left(0.25+0.2188+0.2227\right)
Multiply 2 and 0.1094 to get 0.2188.
1+\frac{1}{24}\left(0.4688+0.2227\right)
Add 0.25 and 0.2188 to get 0.4688.
1+\frac{1}{24}\times 0.6915
Add 0.4688 and 0.2227 to get 0.6915.
1+\frac{1}{24}\times \frac{1383}{2000}
Convert decimal number 0.6915 to fraction \frac{6915}{10000}. Reduce the fraction \frac{6915}{10000} to lowest terms by extracting and canceling out 5.
1+\frac{1\times 1383}{24\times 2000}
Multiply \frac{1}{24} times \frac{1383}{2000} by multiplying numerator times numerator and denominator times denominator.
1+\frac{1383}{48000}
Do the multiplications in the fraction \frac{1\times 1383}{24\times 2000}.
1+\frac{461}{16000}
Reduce the fraction \frac{1383}{48000} to lowest terms by extracting and canceling out 3.
\frac{16000}{16000}+\frac{461}{16000}
Convert 1 to fraction \frac{16000}{16000}.
\frac{16000+461}{16000}
Since \frac{16000}{16000} and \frac{461}{16000} have the same denominator, add them by adding their numerators.
\frac{16461}{16000}
Add 16000 and 461 to get 16461.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}