Solve for x_1
x_{1} = \frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
1x_{1}=\frac{\frac{1}{2}\times 10}{\left(\frac{1}{2}+1-\frac{1}{2}\right)\times 2}
Divide \frac{\frac{1}{2}}{\frac{1}{2}+1-\frac{1}{2}} by \frac{2}{10} by multiplying \frac{\frac{1}{2}}{\frac{1}{2}+1-\frac{1}{2}} by the reciprocal of \frac{2}{10}.
1x_{1}=\frac{\frac{1}{2}\times 5}{\frac{1}{2}+1-\frac{1}{2}}
Cancel out 2 in both numerator and denominator.
1x_{1}=\frac{\frac{5}{2}}{\frac{1}{2}+1-\frac{1}{2}}
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
1x_{1}=\frac{\frac{5}{2}}{\frac{1}{2}+\frac{2}{2}-\frac{1}{2}}
Convert 1 to fraction \frac{2}{2}.
1x_{1}=\frac{\frac{5}{2}}{\frac{1+2}{2}-\frac{1}{2}}
Since \frac{1}{2} and \frac{2}{2} have the same denominator, add them by adding their numerators.
1x_{1}=\frac{\frac{5}{2}}{\frac{3}{2}-\frac{1}{2}}
Add 1 and 2 to get 3.
1x_{1}=\frac{\frac{5}{2}}{\frac{3-1}{2}}
Since \frac{3}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
1x_{1}=\frac{\frac{5}{2}}{\frac{2}{2}}
Subtract 1 from 3 to get 2.
1x_{1}=\frac{\frac{5}{2}}{1}
Divide 2 by 2 to get 1.
1x_{1}=\frac{5}{2}
Anything divided by one gives itself.
x_{1}=\frac{5}{2}
Reorder the terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}