Solve for x (complex solution)
x=\sqrt{17}-5\approx -0.876894374
x=-\left(\sqrt{17}+5\right)\approx -9.123105626
Solve for x
x=\sqrt{17}-5\approx -0.876894374
x=-\sqrt{17}-5\approx -9.123105626
Graph
Share
Copied to clipboard
1x^{2}+10x=-8
Add 10x to both sides.
1x^{2}+10x+8=0
Add 8 to both sides.
x^{2}+10x+8=0
Reorder the terms.
x=\frac{-10±\sqrt{10^{2}-4\times 8}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 10 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 8}}{2}
Square 10.
x=\frac{-10±\sqrt{100-32}}{2}
Multiply -4 times 8.
x=\frac{-10±\sqrt{68}}{2}
Add 100 to -32.
x=\frac{-10±2\sqrt{17}}{2}
Take the square root of 68.
x=\frac{2\sqrt{17}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{17}}{2} when ± is plus. Add -10 to 2\sqrt{17}.
x=\sqrt{17}-5
Divide -10+2\sqrt{17} by 2.
x=\frac{-2\sqrt{17}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{17}}{2} when ± is minus. Subtract 2\sqrt{17} from -10.
x=-\sqrt{17}-5
Divide -10-2\sqrt{17} by 2.
x=\sqrt{17}-5 x=-\sqrt{17}-5
The equation is now solved.
1x^{2}+10x=-8
Add 10x to both sides.
x^{2}+10x=-8
Reorder the terms.
x^{2}+10x+5^{2}=-8+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=-8+25
Square 5.
x^{2}+10x+25=17
Add -8 to 25.
\left(x+5\right)^{2}=17
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{17}
Take the square root of both sides of the equation.
x+5=\sqrt{17} x+5=-\sqrt{17}
Simplify.
x=\sqrt{17}-5 x=-\sqrt{17}-5
Subtract 5 from both sides of the equation.
1x^{2}+10x=-8
Add 10x to both sides.
1x^{2}+10x+8=0
Add 8 to both sides.
x^{2}+10x+8=0
Reorder the terms.
x=\frac{-10±\sqrt{10^{2}-4\times 8}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 10 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\times 8}}{2}
Square 10.
x=\frac{-10±\sqrt{100-32}}{2}
Multiply -4 times 8.
x=\frac{-10±\sqrt{68}}{2}
Add 100 to -32.
x=\frac{-10±2\sqrt{17}}{2}
Take the square root of 68.
x=\frac{2\sqrt{17}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{17}}{2} when ± is plus. Add -10 to 2\sqrt{17}.
x=\sqrt{17}-5
Divide -10+2\sqrt{17} by 2.
x=\frac{-2\sqrt{17}-10}{2}
Now solve the equation x=\frac{-10±2\sqrt{17}}{2} when ± is minus. Subtract 2\sqrt{17} from -10.
x=-\sqrt{17}-5
Divide -10-2\sqrt{17} by 2.
x=\sqrt{17}-5 x=-\sqrt{17}-5
The equation is now solved.
1x^{2}+10x=-8
Add 10x to both sides.
x^{2}+10x=-8
Reorder the terms.
x^{2}+10x+5^{2}=-8+5^{2}
Divide 10, the coefficient of the x term, by 2 to get 5. Then add the square of 5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+10x+25=-8+25
Square 5.
x^{2}+10x+25=17
Add -8 to 25.
\left(x+5\right)^{2}=17
Factor x^{2}+10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+5\right)^{2}}=\sqrt{17}
Take the square root of both sides of the equation.
x+5=\sqrt{17} x+5=-\sqrt{17}
Simplify.
x=\sqrt{17}-5 x=-\sqrt{17}-5
Subtract 5 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}