Solve for x (complex solution)
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&x_{2}=3\end{matrix}\right.
Solve for x_2 (complex solution)
\left\{\begin{matrix}\\x_{2}=3\text{, }&\text{unconditionally}\\x_{2}\in \mathrm{C}\text{, }&x=0\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=0\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&x_{2}=3\end{matrix}\right.
Solve for x_2
\left\{\begin{matrix}\\x_{2}=3\text{, }&\text{unconditionally}\\x_{2}\in \mathrm{R}\text{, }&x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
1x_{2}x-3x=0
Subtract 3x from both sides.
xx_{2}-3x=0
Reorder the terms.
\left(x_{2}-3\right)x=0
Combine all terms containing x.
x=0
Divide 0 by -3+x_{2}.
xx_{2}=3x
Reorder the terms.
\frac{xx_{2}}{x}=\frac{3x}{x}
Divide both sides by x.
x_{2}=\frac{3x}{x}
Dividing by x undoes the multiplication by x.
x_{2}=3
Divide 3x by x.
1x_{2}x-3x=0
Subtract 3x from both sides.
xx_{2}-3x=0
Reorder the terms.
\left(x_{2}-3\right)x=0
Combine all terms containing x.
x=0
Divide 0 by -3+x_{2}.
xx_{2}=3x
Reorder the terms.
\frac{xx_{2}}{x}=\frac{3x}{x}
Divide both sides by x.
x_{2}=\frac{3x}{x}
Dividing by x undoes the multiplication by x.
x_{2}=3
Divide 3x by x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}