Solve for J
J=625000000000000000eV
Solve for V
V=\frac{J}{625000000000000000e}
Share
Copied to clipboard
1eV=16\times \frac{1}{10000000000000000000}J
Calculate 10 to the power of -19 and get \frac{1}{10000000000000000000}.
1eV=\frac{1}{625000000000000000}J
Multiply 16 and \frac{1}{10000000000000000000} to get \frac{1}{625000000000000000}.
\frac{1}{625000000000000000}J=1eV
Swap sides so that all variable terms are on the left hand side.
\frac{1}{625000000000000000}J=eV
Reorder the terms.
\frac{\frac{1}{625000000000000000}J}{\frac{1}{625000000000000000}}=\frac{eV}{\frac{1}{625000000000000000}}
Multiply both sides by 625000000000000000.
J=\frac{eV}{\frac{1}{625000000000000000}}
Dividing by \frac{1}{625000000000000000} undoes the multiplication by \frac{1}{625000000000000000}.
J=625000000000000000eV
Divide eV by \frac{1}{625000000000000000} by multiplying eV by the reciprocal of \frac{1}{625000000000000000}.
1eV=16\times \frac{1}{10000000000000000000}J
Calculate 10 to the power of -19 and get \frac{1}{10000000000000000000}.
1eV=\frac{1}{625000000000000000}J
Multiply 16 and \frac{1}{10000000000000000000} to get \frac{1}{625000000000000000}.
eV=\frac{1}{625000000000000000}J
Reorder the terms.
eV=\frac{J}{625000000000000000}
The equation is in standard form.
\frac{eV}{e}=\frac{J}{625000000000000000e}
Divide both sides by e.
V=\frac{J}{625000000000000000e}
Dividing by e undoes the multiplication by e.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}