1 dm ^ { 3 } = \quad 1,0 \quad mL
Solve for L
\left\{\begin{matrix}\\L=dm^{2}\text{, }&\text{unconditionally}\\L\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Solve for d
\left\{\begin{matrix}d=\frac{L}{m^{2}}\text{, }&m\neq 0\\d\in \mathrm{R}\text{, }&m=0\end{matrix}\right.
Share
Copied to clipboard
dm^{3}=mL
Cancel out 1 on both sides.
mL=dm^{3}
Swap sides so that all variable terms are on the left hand side.
\frac{mL}{m}=\frac{dm^{3}}{m}
Divide both sides by m.
L=\frac{dm^{3}}{m}
Dividing by m undoes the multiplication by m.
L=dm^{2}
Divide dm^{3} by m.
dm^{3}=mL
Cancel out 1 on both sides.
m^{3}d=Lm
The equation is in standard form.
\frac{m^{3}d}{m^{3}}=\frac{Lm}{m^{3}}
Divide both sides by m^{3}.
d=\frac{Lm}{m^{3}}
Dividing by m^{3} undoes the multiplication by m^{3}.
d=\frac{L}{m^{2}}
Divide mL by m^{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}